TECHNICAL UNIVERSITY OF MOMBASA

# FACULTY OF ENGINEERING AND TECHNOLOGY <br> DEPARTMENT OF BUILDING \& CIVIL ENGINEERING <br> UNIVERSITY EXAMINATION FOR: <br> BACHELOR OF SCIENCE IN CIVIL ENGINEERING <br> ECE2212 : FLUID MECHANICS <br> END OF SEMESTER EXAMINATION <br> SERIES: SEPT 2017 <br> TIME: 2 HOURS 

## Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions.
Answer question ONE (COMPULSORY) and any other TWO questions
Do not write on the question paper.

## QUESTION ONE (COMPULSORY)

a) Define the following terms;
i) Water hammer
ii) Laminar flow
iii) Turbulent flow
(6marks)
b) An orifice meter 100 mm diameter is fitted to a 250 mm diameter pipe delivering oil of specific gravity of 0.8 . The pressure difference on the two sides of the meter is measured by a mercury u-tube manometer which records a deflection of 80 mm of mercury. If the coefficient of the meter is 0.65 , determine the rate of flow in litres/s (6marks)
c) A tank has an upper cylindrical portion of 3 m diameter and 4 m high attached to a hemispherical base. A small orifice with an area of $8000 \mathrm{~mm}^{2}$ and with a $C_{d}=0.62$ is provided at the base. Determine the time taken to completely empty the tank. Given that the time taken to completely empty a hemispherical tank, $T=\frac{14 \pi R^{\frac{5}{2}}}{15 C_{d} a \sqrt{2 g}}$
(6marks)
d) A horizontal pipe 40 m long is connected to a tank as shown in fig 1 . Both the entry into the pipe and expansion are sudden. Darcy's $\mathrm{f}=0.01$ for both pipes. Determine ;
i) All the losses
ii) The discharge


## ATTEMPT ANY TWO QUESTIONS QUESTION TWO

a) A venturimeter with a 150 mm diameter inlet and 100 mmm diameter throat is laid with its axis horizontal. It is used to measure the flow of oil of specific gravity 0.9 . A u-tube mercury manometer connected to the meter shows a deflection of 200 mm . if the coefficient of the meter is 0.98 , determine the discharge in litres per minute
b) The head of water over an orifice of 100 mm diameter is 12 m . The water discharging from the orifice is collected in a rectangular tank, 2 mx 0.9 m . The rise of water level in this tank is 1.2 m in 30 seconds. Determine the coefficient of discharge
(4marks)
c) Water is discharging from a tank through a large rectangular orifice 2 m wide and 1.2 m deep, located on its side. The water level in the tank is 0.6 m above the top edge of the orifice and the coefficient of discharge of the orifice is 0.6 . determine ;
I. The discharge
II. The error in the discharge if it was treated as a small orifice
d) A 50 mm diameter jet moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ impinges on a flat stationary plate. Determine the normal force on the plate when;
i) The jet is held normal to the plate
ii) The jet is inclined at $60^{\circ}$ to the plate
(5marks)

## QUESTION THREE

a) A 200 mm diameter horizontal pipe conveys water under a pressure head of 20 m of water. The axis of the pipe turns through $45^{\circ}$, Determine the;
i) Magnitude of the resultant force on the bend
ii) The direction of resultant force on the bend
b) i) With the aid of sketches differentiate an orifice plate from an orifice nozzle
ii) State the main advantage of an orifice nozzle over an orifice plate

## QUESTION FOUR

a) Oil flows through a 25 mm diameter pipe with a mean velocity of $0.3 \mathrm{~m} / \mathrm{s}$. The viscosity of the oil $\mu=4.8 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}$ and the density of oil $\rho=800 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{~A}$, determine;
i) The friction head loss and resultant pressure drop in a 45 m length of pipe
ii) The maximum velocity
iii) The velocity, 5 mm from the pipe wall
b) An oil with a viscosity $\mu=0.9 \mathrm{Ns} / \mathrm{m}^{2}$ and a specific gravity of 0.9 is flowing through a horizontal pipe of 60 mm diameter. If the pressure drop is
$1800 \mathrm{KN} / \mathrm{m}^{2}$ in 100 m length of pipe. Given that velocity at any point in a pipe is given by $v=\frac{1}{4 \mu}\left[\frac{D^{2}}{4}-r^{2}\right] \frac{\Delta p}{\Delta l}$ using usual notation,
Determine;
i) The rate of flow
ii) The centre line velocity (max velocity)
iii) The velocity at 8 mm from the pipe wall
(10marks)

## QUESTION FIVE

a) Water flowing in a certain 200 mm diameter pipe becomes turbulent at a velocity of $11.4 \mathrm{~cm} / \mathrm{s}$. Determine the maximum velocity for flow of air to be laminar in a pipe 40 mm diameter of similar construction.
Assume the following values

- Viscosity of water $\mu_{w}=1.12 \times 10^{-3} \mathrm{~kg} / \mathrm{m} / \mathrm{s}$
- Viscosity of air $\mu_{a}=17.7 \times 10^{-6} \mathrm{~kg} / \mathrm{m} / \mathrm{s}$
- Density of water $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Density of air $=1.23 \mathrm{~kg} / \mathrm{m}^{3}$
(6marks)
b) A rectangular orifice 2 m wide and 1.2 m deep is fitted on the side of a large tank. The water level on the upstream side is 3 m above the top of the orifice, while on the downstream side the water level is 0.5 m below the top edge of the orifice. If $C_{d}=$ 0.64 , determine the discharge through the orifice.
(8marks)
c) Define the following terms as used with liquids;
i) Viscosity
ii) Compressibility
iii) Surface tension

