TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2207: ENGINEERING DRAWING III

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: 15 Dec 2016

## Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Drawing instruments.

This paper consists of five questions.

Attempt any THREE questions.

## Do not write on the question paper.

## QUESTION ONE (30 Marks)

i. Figure Q1(a) shows bracing connections in a column and a beam. Using a suitable scale, produce the bracing details. (15 marks)
ii. Figure Q1(b) shows a section of a truss. The truss has a pitch of $21^{\circ}$ and connected together using bolts and nuts at the joints. The size of the members is indicated in the figure. Using a scale of $1: 25$, reproduce the truss, together with details A and B clearly indicating all the relevant details. (15 Marks)

## QUESTION TWO (20 Marks)

A dual carriageway of 7 m width is to be constructed that will have an invert block drain placed at a distance of 5 m from the edge of one side of the carriageway. The road carriageway also has channels and kerb stones at the edges. Using a suitable scale, draw the typical road cross-section for the proposed road.

## QUESTION THREE (20 Marks)

Figure Q3 shows a typical wall cross-section of a steel framed composited construction. Using the information given and a suitable scale produce the drawing.

## QUESTION FOUR (20 Marks)

Using a scale of 1:1, clearly draw the invert block drain shown in Figure Q4.

## QUESTION FIVE (20 Marks)

A drinking water pipeline is to be laid from the intake point to the purification tanks 66 km away. Table 1 shows the results of a topographical survey carried out on the proposed line. Plot the sectional longitudinal profile of the proposed line taking the horizontal and vertical scales as 1:10 and 1:0.5 respectively.

Table 1: Topographical survey data for a drinking water pipeline

| Chainage (cm) | Hydraulic level <br> (M) | Reduced level <br> (M) | Survey remarks | Pipe details |
| :---: | :---: | :---: | :---: | :---: |
| $0+0000$ | 4000 | 4000 | Intake point | $150 \mathrm{~mm}$ |
| $0+1000$ | 3999 | 3960 |  |  |
| $0+2000$ | 3999 | 3975 |  |  |
| $0+2500$ | 3999 | 3960 | Joining to a road |  |
| $0+3200$ | 3998.72 | 3925 |  |  |
| $0+3500$ | 3998.6 | 3930 |  |  |
| $0+3600$ | 3998.56 | 3930 | Stream crossing | 100 mm |
| $0+3800$ | 3998.48 | 3930 | Stream crossing |  |
| $0+3900$ | 3998.44 |  | Stream crossing |  |
| $0+4100$ | 3998.36 | 3920 |  |  |
| $0+4300$ | 3998.28 | 3910 |  |  |
| $0+4400$ | 3998.24 | 3907.5 | Road junction |  |
| $0+4800$ | 3998.08 | 3900 | Road junction |  |
| $0+6100$ | 3997.56 | 3900 |  |  |
| $0+6600$ | 3997.36 | 3890 |  |  |



Figure Q1(a)


Figure Q1(b)


Figure Q3


Figure Q4

