TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF PURE \& APPLIED SCIENCES
 UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ANALYTICAL CHEMISTRY
DAC 15S

ACH 2210 : CHEMICAL THERMODYNAMICS AND PHASE EQUILIBRIA SPECIAL SUPPLEMENTARY EXAMINATION
 SERIES:AUGUST2017
 TIME:2HOURS

DATE:18Sep2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE

a) The enthalpy of neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ with NaOH is $-51.63 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{Calculate}$ the enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$. Assume that the enthalpy of neutralization of HCl with NaOH is $-57.35 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4marks)
b) Calculate the enthalpy change of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ at $298 \mathrm{~K}^{\mathrm{in} \mathrm{kJ} \mathrm{mol}}{ }^{-1}$ given enthalpy of combustion $\Delta \mathrm{cH}\left(\mathrm{H}_{2}\right)=-286, \Delta \mathrm{cH}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=-1300, \Delta \mathrm{cH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=-1411$ 4marks)
c) When one mole of a liquid benzene is completely burnt in oxygen to form liquid water and carbon dioxide gas, $\Delta \mathrm{H}=-3264.58 \mathrm{Kj}$ at 298 K calculate the enthalpy of reaction at constant volume at the same temperature
(6marks)
d) Differentiate between molar heat capacity and specific heat of a substance
(4 marks)
e) A gas expands from $3 \mathrm{dm}^{3}$ to $5 \mathrm{dm}^{3}$ against a constant pressure of 1 atm at $25^{\circ} \mathrm{C}$ calculate work done in joules by the system against the surroundings?
(4marks)
f) Give the meaning of the following thermodynamic concepts
i) System
ii) Surrounding
iii) Extensive property
iv) Intensive property
g) Calculate the enthalpy of combustion of glucose from the following data
(4marks)
(i) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}$ (g) $\quad \Delta \mathrm{rH}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $\mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}$ (1) $\quad \Delta \mathrm{rH}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) 6 C (graphite) $+6 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (s) $\Delta \mathrm{rH}=-1260 \mathrm{kJmol}^{-1}$

Question TWO

Explain how water's phase diagram differs from that of carbon dioxide gas

(15marks)

Question THREE

a) Two moles of an ideal gas at STP are heated at constant volume to a temperature of 350 K determine the increase in entropy for the system $\mathrm{Cv}=12.47 \mathrm{~J}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
b) sketch the density-temperature diagram ear 0oc showing clearly the anomalous behavior of water and explain the behavior
(6marks)
c i) state the second law of thermodynamic
ii) explain why heat engine with 100% efficiency would violate the second law of thermodynamic (3marks)

Question FOUR

a) The molar heat of fusion and vaporization of benzene are $10.9 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $31 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively calculate the enthalpy change for the solid to liquid and liquid to vapour transition of benzene at 1 atm benzene melt at $5.5^{\circ} \mathrm{C}$ and boils at $80.1^{\circ} \mathrm{C}$
b) Calculate the value of ΔU and ΔH in the isothermal and reversible expansion of 4 g of hydrogen gas at 300 K from an initial volume of $20 \mathrm{dm}^{3}$ to a final volume of $60 \mathrm{dm}^{3}$. Assume that hydrogen gas obeys ideal gas law
(6marks)
c) Calculate the change in entropy when 2 moles of an ideal gas are heated from 300 K to 600 K at a constant pressure under reversible condition. It is given that $C_{\mathrm{P}}=25 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(4marks)

Question FIVE

a) One mole of an ideal gas undergoes reversible changes in a Carnot cycle. First it expands isothermally from a most compressed state of 10 bar and 600 K to a pressure of 1 bar then adiabatically to most expanded state at 300 K . Finally it is brought back to its initial state via isothermal compression and adiabatic compression respectively. Calculate q, w and $\Delta \mathrm{U}$ for each step and the efficiency of the cycle. $\mathrm{CV}=25 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
b) Calculate the entropy change when one mole of liquid water is converted into vapour at $100^{\circ} \mathrm{C}$ The enthalpy of vaporization is $40.850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3marks)

