

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY AND

BIOTECHNOLOGY

ABT 4207: PROTEIN & ENZYME I

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) Give the four main levels of protein structures.	(5 marks)
(b) Hemoglobin is an allosteric protein, whereas Myoglobin is not. How	is this differences expressed (3 marks)
(c) Describe the structure and state the function of the following proteins	
(i) Keratin	(4 marks)
(ii) Collagen	(4 marks)
(d) Give the systematic names and the first three digit in the E.C classified	cation of the following reaction
(a) Phosphoenol Pyruvate + ADP → Pyruvate + ATP	(1 mark)
(b) ATP+ H ₂ O \triangleleft Orthophosphate + ADP	(1 mark)
(c) UDP-Glucose \longleftrightarrow UDP-Galactose	(1 mark)
©Technical University of Mombasa	Page 1 of 2

(e) (i) Define Co-factors	(1 mark)
(ii) Give five examples of Co-factors and state their respective uses.	(5 marks)
(f) List five characteristic features of an active site of an enzyme.	(5 marks)

Question TWO

(a) Describe the heme structure in Myoglobin, Cytochrome and Hemoglobin.	(15 marks)
(b) Explain why an isolated heme molecule in solution binds the poisonous carbon monoxide (CO)	more than
when in combination with Myoglobin.	(5 marks)

Question THREE

(a) Describe characteristics features of three named types of reversible enzyme inhibitors.	(6 marks)
(b) Explain three applications of enzyme inhibitors.	(3 marks)
(c) Outline the various models that have been proposed to explain the substrate specificity of enz Enzyme-Substrate (E-S) complex.	zymes and (6 marks)
(d) Explain the mechanism of enzyme catalysis	(5 marks)

Question FOUR

Describe the features of the active site, functions and mode of action of the following enzymes.

(a) Ribonuclease	(5 marks)
(b) Lysozyme	(5 marks)
(c) Carboxypeptidase	(5 marks)
(d) Chymotrypsin	(5 marks)

Question FIVE

(a) Derive the Michaelis Menten equation	(15 marks)
(b) Define the parameters (enzyme kinetics) used in the Michaelis Menten equation	(5 marks)