

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 5106: TEST OF HYPOTHESIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 3 HOURS

DATE: MAY

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of five questions. Attempt any three. **Do not write on the question paper.**

Question ONE

a. Let $x_1, x_2, ..., x_n$ be independently identically distributed bin(1, p) random variable. Find a most

powerful size α for $\begin{array}{c} H_0; p = p_0 \\ H_1; p = p_1 \end{array}$ where p_0 and p_1 are specified $(p_1 > p_0)$ (7marks)

b. Show that the 1 parameter exponential family $f(x; \theta) = \exp\{\Theta(\theta)T(x) + D(\theta) + S(x)\}$ has a Monotone Likelihood Ratio. (5 marks)

c. Let the vector of random variables $x = (x_1, x_2, ..., x_n)$ have the probability mass function $f(x; \theta)$ where $\{f(x; \theta), \theta \in \Omega\}$ have a monotone likelihood ratio T(x). Show that for testing

$$H_0: \theta \le \theta_0 \text{ against } H_1: \theta > \theta_0 \text{ any test of the form } \phi(x) = \begin{cases} 1 & \text{if } T(x) > t_0 \\ v & \text{if } T(x) = t_0 \text{ has a non-} \\ 0 & \text{if } T(x) < t_0 \end{cases}$$

decreasing power function and is uniform most powerful test. (8marks)

- d. Define a consistent test (4 marks)
- e. Define a uniformly most powerful test (6marks)

Question TWO

- a. Show that if a sufficient statistics T exists for the family $\{f(x; \theta), \theta \in \Omega\} \ \Omega = \{\theta_0, \theta_1\}$ then the Neyman- Pearson Most powerful test is a function of T. (10 marks)
- b. The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100 and the standard deviation is 2. We wish to test H_0 ; $\mu = 100$ versus H_1 ; $\mu \neq 100$ with a sample of n = 9 specimens.
 - i. If the acceptance region is defined as $98.5 \le \overline{x} \le 101.5$, find the type I error probability (3 marks)
 - ii. Find the type two error for the case where the true mean heat evolved is 103.(3marks)
 - iii. Find the power of the test for the case where the true mean heat evolved is 105. This value (4 marks)

Question THREE

- a. Define the likelihood ratio test (7 marks)
- b. Show that if $\{f(x;\theta), \theta \in \Omega\}$ admits a sufficient statistics T then for testing $H_0; \theta \in \Omega_0$ against $H_1; H_0; \theta \in \Omega - \Omega_0$ likelihood ratio test a function of the sufficient statistics. (3marks)
- c. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(\mu, \sigma^2)$ random variables. Find a size α likelihood ratio test for testing H_0 ; $\mu = \mu_0$ against H_1 ; $\mu \neq \mu_0$ (10 marks)

Question FOUR

a. Let $X \sim bin(n, p)$ if $n \rightarrow \infty$ and p is close to Let $\frac{1}{2}$, find a size Let α approximate uniform

most powerful unbiased test for $H_0; p = p_0$ $H_1; p = p_1$ against (10 marks)

b. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(0, \sigma^2)$ random variables. Determine a uniform most powerful unbiased test for the hypothesis of the form $H_0; \sigma^2 = \sigma_0^2$ against $H_1; \sigma^2 = \sigma_1^2$ (10 marks)

Question FIVE

a. Let $x_{i1}, x_{i2}, ..., x_{in}$ be independently identically distributed $N(\mu_i, \sigma_i^2)$ random variables for i = 1, 2, ..., k. Find a size α LRT test for $H_0; \mu_i = \mu_j$ against $H_1; \mu_i \neq \mu_j$ (15 marks)

b. Show that for testing $H_0; \theta_1 \le \theta \le \theta_2$ against $H_1; \theta < \theta_1$ or $\theta > \theta_2$ there exists a uniform most powerful unbiased size α test given by $\phi(x) = \begin{cases} 1 & \text{if } T(x) > c_1 \\ v & \text{if } T(x) = c_2 \end{cases}$ (5 marks)

$$\begin{bmatrix} 0 & if & c_1 < T(x) < c_2 \end{bmatrix}$$