

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

JULY 2017 SERIES EXAMINATION

BMCS

UNIT CODE: AMA 4437 UNIT TITLE: CONTINUUM MECHANICS

SPECIAL EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE

- a. Prove that (a.bxc)r = (a.r)bxc + (b.r)cxa + (c.r)axb
- b. The state of stress at a point is given by the stress tensor

$$\sigma_{ij} = \begin{pmatrix} \sigma & a\sigma & b\sigma \\ a\sigma & \sigma & c\sigma \\ b\sigma & c\sigma & \sigma \end{pmatrix}$$

where a,b,c are constants and σ is some stress value. Determine the constants

c. For the stress having $\sigma_{ij}{}^D = \beta D_{ik} D_{kj}$ determine the dissipation function in terms of the invariants of the rate of deformation tensor D (5 mks)

©Technical University of Mombasa

Page 1 of 5

(4 mks)

(5 mks)

- d. Develop the Navier equation for the plane stress and show that it is equivalent to the corresponding equation for plane strain if $\lambda' = \frac{2\lambda\mu}{\lambda+2\mu}$ is substituted for λ (8 mks)
- e. Show that for orthotropic elastic continuum (three orthogonal planes of elastic symmery) the elastic coefficient matrix is given by (8 mks)

					~	
c ₁₁	c ₁₂	c ₁₃	0	0	0	١
c ₂₁	c ₂₂	c ₂₃	0	0	0	
с ₃₁	c ₃₂ '	c ₃₃	0	0	0	
0	0	0	c ₄₄	0	0	
0	0	0	0	C55	0	
0	0	0	0	0 9	ر 66 ⁰	ļ
-						

QUESTION TWO

a. With the rectangular coordinate system OXYZ oriented so that the XY plane coincides with the II plane and the σ_{III} axis lies in the YOZ plane as shown in the figure (5 mks)

b. Determine the traction force T acting on the closed surface S which surrounds the volume V of a newtonian fluid for which the bulk viscosity is zero (4 mks)

- c. The velocity field is specified by the vector $v = x_1^2 t e_1 + x_2 t^2 e_2 + x_1 x_3 t e_3$. Determine the velocity and acceleration of the particle at p(1,3,2) when t=1. (6 mks)
- d. The momentum principal in differential form is expressed by the equation

$$\frac{\partial (pv_i)}{\partial t} = pb_i + \sigma_{ij} - (pv_iv_j), i$$

©Technical University of Mombasa

Page **2** of **5**

Show that the equation of motion $\sigma_{ii,i} + \rho b_i = pv_i$ comes from this equation (5 mks)

QUESTION THREE

- a. A velocity field is given by $v_1 = 4x_3 3x_2$, $v_2 = 3x_1$, $v_3 = -4x_1$. determine the acceleration components at p(b,0,0) and Q(0,4b,3b) and note that the velocity field corresponds to a rigid body rotation of angular velocity 5 about the axis along $e = \frac{4e_2+3e_3}{5}$ (5 mks)
- b. For the vectors a = 3i + 4k b = 2j 6k and the dyadic D = 3ii + 2ik 4j kj. Compute by matrix multiplication the products a.D, D.b and a.D.b (5 mks)

c. (i) For the function $\lambda = A_{ij}x_ix$ where A is a constant, show that $\frac{\partial y}{\partial x} = (A_{ij} + A_{ij})x_i$ and $\frac{\partial y}{\partial x} = (A_{ij} + A_{ij})x_i$ and

$$\frac{\partial y}{\partial x_i \partial x_j} = A_{ij} + A_{ji} \tag{3 mks}$$

(ii)Determine the derivative of the function $\lambda = (x_1)^2 + 2x_1x_2 - (x_3)^2$ in the direction of the unit normal $n = \frac{2e_1 - 3e_2 - 6e_3}{7}$ (2 mks)

d. The state of stress throughout the continuum is given with respect to the Cartesian axes $OX_1X_2X_3$ by the array

$$\varepsilon = \begin{pmatrix} 3x_1x_2 & 5x_2 & 0\\ 5x_2 & 0 & 2x_3\\ 0 & 2x_3 & 0 \end{pmatrix}$$

determine the stress vector acting at the point P(2,1,3) of the plane that is tangent to the cylindrical surface (5 mks)

©Technical University of Mombasa

QUESTION FOUR

- a. (i) Expand and simplify where possible the expression $d_{ij}x_ix_j$ for $d_{ij} = D_{ji}$ (3 mks)
 - (ii) Evaluate the expression involving the kronecker delta for the range of three on the indicies σ_{ii} (2 mks)
- Determine directly the components of the metric tensor for spherical polar coordinates as shown in the figure (7 mks)

c. The Eulerian description of a continuum motion is given by

 $x_1 = X_1e^t + X_3(e^t - 1), \quad x_2 = X_3(e^{-t} - e^{-t}) + X_2, \qquad x_3 = X_3$ Show that the jacobian J does not vanish for this motion and determine the material description by inverting the displacement equation (4 mks)

d. Under a load P in a one dimensional test, the true stress is $\sigma = \frac{p}{A}$ while the engineering stress is $s = \frac{p}{A_0}$ where A_0 is the original area and A is the current area. For a constant volume plastic deformation, determine the condition for maximum load. (4 mks)

QUESTION FIVE

- a. For the velocity field $v_i = \frac{x_i}{1+t'}$, show that $\rho x_1 x_2 x_3 = \rho_0 X_1 X_2 X_3$ (4 mks)
- b. In a two dimenstional flow parallel to the x_1x_2 plane, v_3 and $\frac{\partial}{\partial x_3}$ are zero.his case Determine the Navier Stokes equation for an incompressible fluid and the form of the continuity equation for t. (6 mks)
- c. Use the divergence theorem of Gauss to show that $\int_s x_i n_j ds = d\sigma_{ij}$. where $n_j ds$ represents the surface element of S, the bounding suface of the volume V shown in the figure.

(4 mks)

©Technical University of Mombasa

Page 4 of 5

d. The motion of the continuum is given by

$$x_{1} = Ae^{-\frac{B\lambda}{\lambda}} \sin \lambda (a + \omega t)$$

$$x_{2} = -B - e^{-\frac{B\lambda}{\lambda}} \cos \lambda (A + \omega t)$$

$$x_{3} = X_{3}$$

Show that the particle paths are circles and that the velocity magnitude is constant. Also determine the relationship between X and X and the constants A and B (6 mks)