TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

## JULY 2017 SERIES EXAMINATION

## BMCS

UNIT CODE: AMA 4437 UNIT TITLE: CONTINUUM MECHANICS
SPECIAL EXAMINATION
TIME ALLOWED: 2HOURS

## INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

## QUESTION ONE

a. Prove that $(a . b x c) r=(a . r) b x c+(b . r) c x a+(c . r) a x b$
b. The state of stress at a point is given by the stress tensor

$$
\sigma_{i j}=\left(\begin{array}{ccc}
\sigma & a \sigma & b \sigma \\
a \sigma & \sigma & c \sigma \\
b \sigma & c \sigma & \sigma
\end{array}\right)
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants and $\sigma$ is some stress value. Determine the constants
c. For the stress having $\sigma_{i j}^{D}=\beta D_{i k} D_{k j}$ determine the dissipation function in terms of the invariants of the rate of deformation tensor $D$
d. Develop the Navier equation for the plane stress and show that it is equivalent to the corresponding equation for plane strain if $\lambda^{\prime}=\frac{2 \lambda \mu}{\lambda+2 \mu}$ is substituted for $\lambda$
e. Show that for orthotropic elastic continuum (three orthogonal planes of elastic symmery) the elastic coefficient matrix is given by

$$
\left(\begin{array}{cccccc}
c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\
c_{21} & c_{22} & c_{23} & 0 & 0 & 0 \\
c_{31} & c_{32} & c_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}
\end{array}\right)
$$

## QUESTION TWO

a. With the rectangular coordinate system OXYZ oriented so that the XY plane coincides with the II plane and the $\sigma_{I I I}$ axis lies in the YOZ plane as shown in the figure


b. Determine the traction force $T$ acting on the closed surface $S$ which surrounds the volume $V$ of a newtonian fluid for which the bulk viscosity is zero

c. The velocity field is specified by the vector $v=x_{1}{ }^{2} t e_{1}+x_{2} t^{2} e_{2}+x_{1} x_{3} t e_{3}$. Determine the velocity and acceleration of the particle at $p(1,3,2)$ when $t=1$.
d. The momentum principal in differential form is expressed by the equation

$$
\frac{\partial\left(p v_{i}\right)}{\partial t}=p b_{i}+\sigma_{i j}-\left(p v_{i} v_{j}\right), i
$$

## QUESTION THREE

a. A velocity field is given by $v_{1}=4 x_{3}-3 x_{2}, v_{2}=3 x_{1}, \quad v_{3}=-4 x_{1}$. determine the acceleration components at $p(b, 0,0)$ and $\mathrm{Q}(0,4 \mathrm{~b}, 3 \mathrm{~b})$ and note that the velocity field corresponds to a rigid body rotation of angular velocity 5 about the axis along $e=\frac{4 e_{2}+3 e_{3}}{5}$
b. For the vectors $a=3 i+4 k b=2 j-6 k$ and the dyadic $D=3 i i+2 i k-4 j-k j$. Compute by matrix multiplication the products a.D, D.b and a.D.b
c. (i) For the function $\lambda=A_{i j} x_{i} x$ where A is a constant, show that $\frac{\partial y}{\partial x}=\left(A_{i j}+A_{i j}\right) x_{i}$ and $\frac{\partial y}{\partial x_{i} \partial x_{j}}=A_{i j}+A_{j i}$
(ii)Determine the derivative of the function $\lambda=\left(x_{1}\right)^{2}+2 x_{1} x_{2}-\left(x_{3}\right)^{2}$ in the direction of the unit normal $\boldsymbol{n}=\frac{2 e_{1}-3 e_{2}-6 e_{3}}{7}$
d. The state of stress throughout the continuum is given with respect to the Cartesian axes $O X_{1} X_{2} X_{3}$ by the array

$$
\varepsilon=\left(\begin{array}{ccc}
3 x_{1} x_{2} & 5 x_{2} & 0 \\
5 x_{2} & 0 & 2 x_{3} \\
0 & 2 x_{3} & 0
\end{array}\right)
$$

determine the stress vector acting at the point $P(2,1,3)$ of the plane that is tangent to the cylindrical surface


## QUESTION FOUR

a. (i) Expand and simplify where possible the expression $d_{i j} x_{i} x j$ for $d_{i j}=D_{j i}$
(ii) Evaluate the expression involving the kronecker delta for the range of three on the indicies $\sigma_{i i}$
b. Determine directly the components of the metric tensor for spherical polar coordinates as shown in the figure

c. The Eulerian description of a continuum motion is given by

$$
x_{1}=X_{1} e^{t}+X_{3}\left(e^{t}-1\right), \quad x_{2}=X_{3}\left(e^{-t}-e^{-t}\right)+X_{2}, \quad x_{3}=X_{3}
$$

Show that the jacobian J does not vanish for this motion and determine the material description by inverting the displacement equation
d. Under a load P in a one dimensional test, the true stress is $\sigma=\frac{p}{A}$ while the engineering stress is $s=\frac{p}{A_{0}}$ where $A_{0}$ is the original area and A is the current area. For a constant volume plastic deformation, determine the condition for maximum load.

## QUESTION FIVE

a. For the velocity field $v_{i}=\frac{x_{i}}{1+t^{\prime}}$, show that $\rho x_{1} x_{2} x_{3}=\rho_{0} X_{1} X_{2} X_{3}$
b. In a two dimenstional flow parallel to the $x_{1} x_{2}$ plane, $v_{3}$ and $\frac{\partial}{\partial x_{3}}$ are zero.his case Determine the Navier Stokes equation for an incompressible fluid and the form of the continuity equation for $t$. ( 6 mks )
c. Use the divergence theorem of Gauss to show that $\int_{s} x_{i} n_{j} d s=d \sigma_{i j}$. where $n_{j} d s$ represents the surface element of $S$, the bounding suface of the volume $V$ shown in the figure.

d. The motion of the continuum is given by

$$
\begin{aligned}
& x_{1}=A e^{-\frac{B \lambda}{\lambda}} \sin \lambda(a+\omega t) \\
& x_{2}=-B-e^{-\frac{B \lambda}{\lambda}} \cos \lambda(A+\omega t) \\
& x_{3}=X_{3}
\end{aligned}
$$

Show that the particle paths are circles and that the velocity magnitude is constant. Also determine the relationship between X and X and the constants A and B

