THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION TECHNOLOGY (DIT)

END OF SEMESTER EXAMINATION

APRIL/MAY 2010 SERIES

MATHEMATICS

TIME: 2 HOURS

Instructions to Candidates

- Answer ALL Questions in Section A and any TWO from Section B.
- Show ALL your working.
- ALL mobile phones MUST be switched off.

SECTION A: COMPULSORY (30 Marks)

Question ONE

- (a). Evaluate
 - (i). 11101 - 101011 + 1101011

(2 Marks)

1101001111 ÷1011 (ii).

(4 Marks)

- (b). Convert the following numbers:
 - 1101.0101₂ to Decimal (i).

(3 Marks)

2CA9₁₆ to Octal (ii).

(3 Marks)

- (c). Solve for the unknowns
 - 3x + 5y = 9(i). 7x + 4y = -2

(3 Marks)

2xy + y = 10(ii). x + y = 4

(4 Marks)

- Find the value of $\frac{1}{2}SP + 3S P$ Given: (d).

- $A = \begin{pmatrix} 3 & 0 \\ 8 & 4 \end{pmatrix} \qquad \text{and} \qquad P = \begin{pmatrix} 2 & 7 \\ 1 & 9 \end{pmatrix}$
- (4 Marks)
- (e). Draw the symbol of a NAND Gate and give its truth table.
 - (3 Marks)
- (f). List the weighted value for the following numbers.
 - 110101₂ (i).

(2 Marks)

 $4BC6_{16}$ (ii).

(2 Marks)

Question TWO

- (a). Evaluate the following in BCD
 - (i). 473 729

(4 Marks)

(ii). 13×6

(6 Marks)

- (b). Express:
 - (i). 34_{16} in Gray Code

(3 Marks)

(ii). Gray Code 10111011 in Decimal.

(3 Marks)

- (c). Write the following bits with odd and even parity.
 - (i). 1011001

(2 Marks)

(ii). 11010011

(2 Marks)

Question THREE

(a). Simplify the Boolean Algebra Expression below:

$$Q = \overline{ABC} + AB\,\overline{C} + ABC$$

(4 Marks)

- (b). Implement the circuit of Q above in its simplest form. (4 Marks)
- (c). Draw the truth table with all the possible outputs for the simplified expression of Q above. **(4 Marks)**
- (d). Draw the output of the signals below when passed through an OR Gate.

(4 Marks)

(e). Show how a NAND Gate can be used as an inverted Gate to perform the function of an AND Gate. (4 Marks)

Question FOUR

(a). Given:
$$A = \begin{pmatrix} 4 & -2 & -3 \\ 5 & 3 & -4 \\ 6 & -4 & -5 \end{pmatrix}$$

Find:

(b). Solve:

$$\frac{2}{1+3x} - \frac{1}{2-x} = \frac{3}{7}$$
 (4 Marks)

(c). A computer from ordered goods via courier services. If this van, travelled 20Km/hr faster, it would take two hours less to cover 1000Km. Calculate the speed of the van. (6 Marks)

Question FIVE

(a). Evaluate the following:

(i).
$$^{10}P_5$$
 (1 Mark)
(ii). $^{8}P_2 \times \frac{10!}{2! \ 28!}$ (4 Marks)

- (b). How many different ways can the Alphabets of the word "Accommodation" be rearranged. **(4 Marks)**
- (c). The 2010 DIT module III class is of 5 Gents and 4 ladies. Three students are selected to represent the Department in IEEE Projects from among the 9 members of the class.
 - (i). Determine the number of ways the representatives can be chosen. **(4 Marks)**
 - (ii). The number of ways the representatives can be chosen if at least one members must be a lady. **(7 Marks)**