

FACULTY OF ENGINEERING AND TECHNOLOGY IN CONJUCTION WITH KENYA INSTITUTE OF HIGHWAYS AND BUILIDNG TECHNOLOGY (KIHBT)

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

HIGHER DIPLOMA IN BUILDING ECONOMICS

EBE 3105: MATHEMATICS I A

END OF SEMESTER EXAMINATIONS SERIES: OCTOBER 2016

TIME: 2HOURS

Instruction to candidates

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consist of five question.

Answer any three questions of the five questions

All question carry equal marks

Maximum marks for each part of a question are as shown

This paper consist of two printed pages

QUESTION 1.

a) Solve
$$2^{x+1} = 3^{2x-5}$$
 Correct to 2 decimal places (4mks)

b) Determine in polar form
$$(-2 + j3)^6$$
 Using De moivres theorem (4mks)

c) Evaluate
$$\frac{dz}{dt}$$
 Correct to 4 significant figures when $t = 0.5$ given that $Z = 2e^{3t} \sin 2t$ (4mks)

d) Given
$$Z = 4e j^{1.3}$$
, determine in lnZ in Cartesian form (4mks)

e) Evaluate in polar form
$$(-7-j5)^4$$
 (4mks)

QUESTION 2.

a) The time of oscillation t of a pendulum is given by $t = 2\pi \sqrt{\frac{1}{g}}$ where l is the length of the pendulum and g the free fall acceleration due to gravity.

Determine $\frac{\partial t}{\partial g}$ (3mks)

b) If
$$Z = f(U,V,W)$$
 and $Z = 3u^2 - 2V + 4w^3 v^2$
Find the total differential, dZ (4mks)

c) Evaluate

i)
$$\frac{1}{1+j}$$
 (2mks)

ii)
$$(1+j2)(-2+j3)$$
 (2mks)

d) Express
$$-3 - j4$$
 in polar form and represent it on argand diagram (6mks)

e) using euler formula express
$$4.2 e^{-7.5i}$$
 in the form $a + bi$ (3mks)

QUESTION 3

a) Given
$$Z = 1 - j3$$
, $Z_2 = 2 + j5$ and $Z_3 = -3 - j4$, Determine (5mks)

(i) $\mathbb{Z}_1 \mathbb{Z}_2$

(ii)
$$\frac{Z_1}{Z_3}$$

b) Differentiate the following functions

$$y = \frac{x^2}{\sqrt{x+1}}$$
 (5mks)

(ii)
$$y = x^{\frac{1}{2}} \sin 3x \tag{3mks}$$

c) Given
$$y = 2xe^{-3x}$$
 show that (5mks)

$$\frac{d^2y}{dx^2} + 6 \frac{dy}{dx} + 9y = 0$$

d) Given
$$y = \frac{2 x^3 - 4}{5 x^3} + 4 \sqrt{x^5} + 7$$
. Find $\frac{dy}{dx}$ (2mks)

QUESTION 4.

a) Evaluate
$$\underline{Z_1 Z_2}$$
 given $Z_1 = 1 + j2$ and $Z_2 = -2 + j3$ (5mks)

b) Find the derivative of
$$y = \frac{5}{\sqrt[3]{x^4}}$$
 (3mks)

c) i) Show that if
$$y = \cos^{-1} x$$
 then $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$ (3mks)

ii) Hence find the differential coefficient of
$$y = Cos^{-1} (1 - 2x^2)$$
 (5mks)

d) Given
$$Z = 5x^4 + 2x^3y^2 - 3y$$
 Find

i)
$$\frac{\partial z}{\partial x}$$
 (2mks)

ii)
$$\frac{\partial z}{\partial y}$$
 (2mks)

QUESTION 5.

- a) The second moment of area of a rectangle is given by $I = \underline{b1^3}$ If b and l are measured as 40mm and 90mm respectively and measurement errors are -5mm in b and +8mm in l. Find the approximate error in the calculated value of I (4mks)
- b) Given $y = 2x^3$, determine from first principle the differential coefficient (3mks)
- c) Find the derivative of $y=\tan x$ (3mks)
- d) Show that $-\frac{25}{2} \left(\frac{1+j2}{3+j4} \frac{2-j5}{-j} \right) = 57 + j24$ (4mks)
- e) Evaluate in polar form $2 < 30^0 + 5 < -45^0 4 < 120^0$ (6mks)