

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY IN CONJUCTION WITH KENYA INSTITUTE OF HIGHWAYS AND BUILIDNG TECHNOLOGY (KIHBT)

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

HIGHER DIPLOMA IN BUILDING ECONOMICS

EBE 3105: MATHEMATICS I A

END OF SEMESTER EXAMINATIONS SERIES: OCTOBER 2016

TIME: 2HOURS

Instruction to candidates

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consist of five question. Answer any three questions of the five questions All question carry equal marks Maximum marks for each part of a question are as shown This paper consist of two printed pages

QUESTION 1.

QUESTION 1. a) Solve $2^{x+1} = 3^{2x-5}$ Correct to 2 decimal places	(4mks)
b) Determine in polar form $(-2 + j3)^6$ Using De moivres theorem	(4mks)
c) Evaluate $\frac{dz}{dt}$ Correct to 4 significant figures when t = 0.5 given that Z = 2e ^{3t} sin 2t	(4mks)
d) Given $Z = 4e j^{1.3}$, determine in lnZ in Cartesian form	(4mks)
e) Evaluate in polar form $(-7 - j5)^4$	(4mks)
QUESTION 2.	
a) The time of oscillation t of a pendulum is given by $t = 2\pi \sqrt{\frac{1}{g}}$ when	re l is the length
of the pendulum and g the free fall acceleration due to gravity.	
Determine $\frac{\partial t}{\partial g}$	(3mks)
b) If $Z = f(U,V,W)$ and $Z = 3u^2 - 2V + 4w^3 v^2$	
Find the total differential, dZ	(4mks)

c) Evaluate

i)	1	(2mks)
	1 + j	

ii) (1+j2)(-2+j3) (2mks)

- d) Express -3 j4 in polar form and represent it on argand diagram (6mks)
- e) using euler formula express $4.2 e^{-7.5i}$ in the form a + bi (3mks)

© 2016 TECHNICAL UNIVERSITY OF MOMBASA

QUESTION 3

- a) Given Z = 1 j3, $Z_2 = 2 + j5$ and $Z_3 = -3 j4$, Determine (5mks)
 - (i) $Z_1 Z_2$
 - (ii) $\frac{Z_1}{Z_3}$
- b) Differentiate the following functions (i) $y = \frac{x^2}{\sqrt{x+1}}$ (5mks) (ii) $y = x^{\frac{1}{2}} \sin 3x$ (3mks)

c) Given
$$y = 2xe^{-3x}$$
 show that (5mks)

- $\frac{d^2y}{dx^2} + 6 \frac{dy}{dx} + 9y = 0$
- d) Given $y = \frac{2x^3}{5} \frac{4}{x^3} + 4\sqrt{x^5} + 7$. Find $\frac{dy}{dx}$ (2mks)

QUESTION 4.

- a) Evaluate $\underline{Z_1 Z_2}_{Z_1 + Z_2}$ given $Z_1 = 1 + j2$ and $Z_2 = -2 + j3$ (5mks)
- b) Find the derivative of $y = \frac{5}{\sqrt[3]{x^4}}$ (3mks)
- c) i) Show that if $y = \cos^{-1} x$ then $\frac{dy}{dx} = \frac{1}{\sqrt{1 x^2}}$ (3mks) ii) Hence find the differential coefficient of $y = \cos^{-1} (1 - 2x^2)$ (5mks)
- d) Given $Z = 5x^4 + 2x^3y^2 3y$ Find
 - i) $\frac{\partial z}{\partial x}$ (2mks)

ii)
$$\frac{\partial z}{\partial y}$$
 (2mks)

QUESTION 5.

a) The second moment of area of a rectangle is given by $I = \frac{bl^3}{3}$ If b and l are

measured as 40mm and 90mm respectively and measurement errors are -5mm in b and +8mm in l. Find the approximate error in the calculated value of I (4mks)

- b) Given $y = 2x^3$, determine from first principle the differential coefficient (3mks)
- c) Find the derivative of $y = \tan x$ (3mks)
- d) Show that $-\frac{25}{2} \left(\begin{array}{ccc} 1 + j2 & & 2 j5 \\ 3 + j4 & -j \end{array} \right) = 57 + j24$ (4mks)
- e) Evaluate in polar form $2 < 30^{\circ} + 5 < -45^{\circ} 4 < 120^{\circ}$ (6mks)