FACULTY OF ENGINEERING AND TECHNOLOGY IN CONJUCTION WITH KENYA INSTITUTE OF HIGHWAYS AND BUILIDNG TECHNOLOGY (KIHBT)

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR:
HIGHER DIPLOMA IN BUILDING ECONOMICS
EBE 3105: MATHEMATICS I A
END OF SEMESTER EXAMINATIONS SERIES: OCTOBER 2016

TIME: 2HOURS

Instruction to candidates

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consist of five question.
Answer any three questions of the five questions
All question carry equal marks
Maximum marks for each part of a question are as shown
This paper consist of two printed pages

QUESTION 1.

a) Solve $2^{x+1}=3^{2 x-5}$ Correct to 2 decimal places
b) Determine in polar form $(-2+\mathrm{j} 3)^{6}$ Using De moivres theorem
c) Evaluate $\frac{d z}{d t}$ Correct to 4 significant figures
when $t=0.5$ given that $Z=2 \mathrm{e}^{3 t} \sin 2 \mathrm{t}$
d) Given $Z=4 e j^{1.3}$, determine in $\ln Z$ in Cartesian form
e) Evaluate in polar form $(-7-\mathrm{j} 5)^{4}$

QUESTION 2.

a) The time of oscillation t of a pendulum is given by $t=2 \pi \sqrt{\frac{l}{g}}$ where l is the length of the pendulum and g the free fall acceleration due to gravity. Determine $\frac{\partial t}{\partial g}$
b) If $Z=f(U, V, W)$ and $Z=3 u^{2}-2 V+4 w^{3} v^{2}$ Find the total differential, $\mathrm{d} Z$
c) Evaluate
i) $\frac{1}{1+\mathrm{j}}$
ii) $(1+\mathrm{j} 2)(-2+\mathrm{j} 3)$
d) Express $-3-\mathrm{j} 4$ in polar form and represent it on argand diagram
e) using euler formula express $4.2 \mathrm{e}^{-7.5 \mathrm{i}}$ in the form $\mathrm{a}+\mathrm{bi}$

QUESTION 3

a) Given $Z=1-j 3, Z_{2}=2+j 5$ and $Z_{3}=-3-j 4$, Determine (5mks)
(i) $Z_{1} Z_{2}$
(ii) $\frac{Z_{1}}{Z_{3}}$
b) Differentiate the following functions
(i)

$$
\begin{equation*}
y=\frac{x^{2}}{\sqrt{x+1}} \tag{5mks}
\end{equation*}
$$

(ii) $\mathrm{y}=x^{\frac{1}{2}} \sin 3 \mathrm{x}$
c) Given $\mathrm{y}=2 \mathrm{x} e^{-3 x}$ show that

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0
$$

d) Given $\mathrm{y}=\frac{2 \mathrm{x}^{3}}{5}-\frac{4}{\mathrm{x}^{3}}+4 \sqrt{x^{5}}+7$. Find $\frac{d y}{d x}$

QUESTION 4.

a) Evaluate $\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$ given $Z_{1}=1+j 2$ and $Z_{2}=-2+j 3$
b) Find the derivative of $y=\frac{5}{\sqrt[3]{x^{4}}}$
c) i) Show that if $\mathrm{y}=\cos ^{-1} x$ then $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
ii) Hence find the differential coefficient of

$$
\begin{equation*}
y=\operatorname{Cos}^{-1}\left(1-2 x^{2}\right) \tag{5mks}
\end{equation*}
$$

d) Given $Z=5 x^{4}+2 x^{3} y^{2}-3 y$ Find
i) $\frac{\partial z}{\partial x}$
ii) $\frac{\partial z}{\partial y}$

QUESTION 5.

a) The second moment of area of a rectangle is given by $\mathrm{I}=\frac{\mathrm{bl}^{3}}{3}$ If b and l are measured as 40 mm and 90 mm respectively and measurement errors are -5 mm in b and +8 mm in l . Find the approximate error in the calculated value of I $(4 \mathrm{mks})$
b) Given $y=2 x^{3}$, determine from first principle the differential coefficient (3mks)
c) Find the derivative of $y=\tan x$
d) Show that $\frac{-25}{2}\left(\frac{1+\mathrm{j} 2}{3+j 4}-\frac{2-\mathrm{j} 5}{-j}\right)=57+\mathrm{j} 24$
e) Evaluate in polar form $2<30^{0}+5<-45^{0}-4<120^{0}$

