

FACULTY OF ENGINEERING AND TECHNOLOGY IN CONJUCTION WITH KENYA INSTITUTE OF HIGHWAYS AND BUILIDNG TECHNOLOGY (KIHBT)

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

HIGHER DIPLOMA IN BUILDING ECONOMICS

EBE 3101: MATHEMATICS I A

END OF SEMESTER EXAMINATIONS SERIES: OCTOBER 2016

TIME: 2HOURS

Instruction to candidates

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consist of five question.

Answer any three questions of the five questions

All question carry equal marks

Maximum marks for each part of a question are as shown

This paper consist of two printed pages

QUESTION 1.

a) Find the modulus and argument of the complex numbers Z = 2 + j3 and express Z in polar form (3mks)

b) solve
$$Log(x-1) + Log(x+1) = 2log(x+2)$$
 (4mks)

c) Given
$$y = \sqrt{x^3} \ln 3x$$
, Find $\frac{dy}{dx}$ (3mks)

d) Differentiate
$$y = 3\tan^4 3x$$
 (4mks)

- e) Determine from first principle the differential coefficient of $2x^2$ (3mks)
- f) Evaluate in polar form $\frac{10 < \frac{\pi}{4} \times 12 < \frac{\pi}{2}}{6 < -\frac{\pi}{2}}$ (3mks)

QUESTION 2.

b) Given
$$Z = 3 e^{1-j}$$
. Find $\ln Z$ in polar form (6mks)

c) Evaluate
$$\frac{dy}{dx}$$
 correct to 4 significant figures
when $x = 0.5$ given that $y = 2e^{3x} \sin 2x$ (4mks)

d) Determine the differential coefficient of $y = \tan^{-1} \frac{x}{a}$ and show that the differential coefficient of $\tan^{-1} \frac{2x}{3}$ is $\frac{6}{9+4x^2}$ (7mks)

QUESTION 3.

a) Determine the magnitude and direction of the resultant of the three coplanar forces given below, when they act at a point

Force A – ION acting at 45^o from positive horizontal axis

Force B - 8N acting at 120^{0} from positive horizontal axis

Force C - 15N acting at 210^0 from positive horizontal axis (5mks)

b) Evaluate
$$j \left(\frac{1+j3}{1-j2}\right)^2$$

(3mks)

c) Find the derivative of
$$y = \sec ax$$
 (6mks)

- d) Given $y = 4 \sin 3x \cos 2t$, Find;
- © 2016 TECHNICAL UNIVERSITY OF MOMBASA

i)
$$\frac{\partial y}{\partial x}$$
 (2mks)

ii)
$$\frac{\partial y}{\partial t}$$
 (2mks)

e) Find the second differential coefficient given $f(x) = 2x^5 - 4x^3 + 3x - 5$ (2mks)

QUESTION 4.

a) Find the roots of
$$(-14 + i3)^{-2/5}$$
 in polar form (6mks)

b) Evaluate
$$\frac{1-j}{1+j}$$
 (3mks)

c) Given
$$y = xe^{2x}$$
 show that the $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$ (6mks)

d) The pressure P, volume V and temperature T of a gas are related by PV = KT where K is a constant. Determine total differential dp in terms of P, V and T (5mks)

QUESTION 5.

a) Determine in polar form
$$(-2 + j3)^6$$
 (4mks)

- b) Given $Z_1 = 2+j4$ and $Z_2 = 3-j$ determine $Z_1 Z_2$ and represent the results on an argand diagram (4mks)
- c) The displacement **S** cm of the end of a stiff spring at time t seconds is given by $s = ae^{-kt}$ Sin $2\pi ft$. Determine the velocity of the end of, spring after 1 second given a=2, k=0.9 and f=5 (4mks)

d) Given
$$Z = 4x^2 y^3 - 2x^3 + 7y^2$$
, Find $\frac{\partial z^2}{\partial y \partial x}$ (2mks)

e) Show that if
$$Z = \frac{x}{y}$$
 1ny then $\frac{\partial 2}{\partial y} = \frac{\partial \hat{x}}{\partial y \partial x}$ (6mks)