FACULTY OF ENGINEERING AND TECHNOLOGY IN CONJUCTION WITH KENYA INSTITUTE OF HIGHWAYS AND BUILIDNG TECHNOLOGY (KIHBT)

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR:
HIGHER DIPLOMA IN BUILDING ECONOMICS
EBE 3101: MATHEMATICS I A
END OF SEMESTER EXAMINATIONS SERIES: OCTOBER 2016

TIME: 2HOURS

Instruction to candidates

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consist of five question.
Answer any three questions of the five questions
All question carry equal marks
Maximum marks for each part of a question are as shown
This paper consist of two printed pages

QUESTION 1.

a) Find the modulus and argument of the complex numbers $Z=2+\mathrm{j} 3$ and express Z in polar form
b) solve $\log (x-1)+\log (x+1)=2 \log (x+2)$
c) Given $y=\sqrt{x}{ }^{3} \ln 3 x$, Find $\frac{d y}{d x}$
d) Differentiate $y=3 \tan ^{4} 3 x$
e) Determine from first principle the differential coefficient of $2 \mathrm{x}^{2} \quad(3 \mathrm{mks})$
f) Evaluate in polar form

$$
\begin{equation*}
\frac{10<\frac{\pi}{4} \times 12<\frac{\pi}{2}}{6<-\frac{\pi}{3}} \tag{3mks}
\end{equation*}
$$

QUESTION 2.

a) Using euler's formula, express $3+4 \mathrm{j}$ in the form $\mathrm{re}^{\mathrm{jx}}$
b) Given $Z=3 \mathrm{e}^{1-\mathrm{j}}$. Find $\ln Z$ in polar form
c) Evaluate $\frac{d y}{d x}$ correct to 4 significant figures

$$
\begin{equation*}
\text { when } x=0.5 \text { given that } y=2 e^{3 x} \sin 2 x \tag{4mks}
\end{equation*}
$$

d) Determine the differential coefficient of $\mathrm{y}=\tan ^{-1} \quad \frac{x}{a}$ and show that the differential coefficient of $\tan ^{-1} \quad \frac{2 x}{3}$ is $\frac{6}{9+4 \mathrm{x}^{2}}$

QUESTION 3.

a) Determine the magnitude and direction of the resultant of the three coplanar forces given below, when they act at a point

Force $\mathrm{A}-\mathrm{ION}$ acting at 45^{0} from positive horizontal axis
Force $\mathrm{B}-8 \mathrm{~N}$ acting at 120° from positive horizontal axis
Force $\mathrm{C}-15 \mathrm{~N}$ acting at 210° from positive horizontal axis
b) Evaluate

$$
\begin{equation*}
\mathrm{j} \quad\left(\frac{1+\mathrm{j} 3}{1-\mathrm{j} 2}\right) \tag{5mks}
\end{equation*}
$$

c) Find the derivative of $y=\sec a x$
d) Given $y=4 \sin 3 x \cos 2 t$, Find;
i) $\frac{\partial y}{\partial x}$
ii) $\frac{\partial y}{\partial t}$
e) Find the second differential coefficient given $f(x)=2 x^{5}-4 x^{3}+3 x-5 \quad$ (2mks)

QUESTION 4.

a) Find the roots of $(-14+j 3)^{-2 / 5}$ in polar form
(6mks)
b) Evaluate $\frac{1-\mathrm{j}}{1+\mathrm{j}}$
(3mks)
c) Given $y=x e^{2 x}$ show that the $\frac{d^{2} y}{{d x^{2}}^{d x}}-\frac{4 d y}{d x}+4 y=0$
d) The pressure P , volume V and temperature T of a gas are related by $\mathrm{PV}=\mathrm{KT}$ where K is a constant. Determine total differential dp in terms of P, V and T (5mks)

QUESTION 5.

a) Determine in polar form $(-2+j 3)^{6}$
(4mks)
b) Given $\mathrm{Z}_{1}=2+\mathrm{j} 4$ and $Z 2=3-j$ determine $\mathrm{Z}_{1}-Z_{2}$ and represent the results on an argand diagram
c) The displacement $\mathbf{S c m}$ of the end of a stiff spring at time t seconds is given by $\mathrm{s}=\mathrm{ae}^{-\mathrm{kt}} \operatorname{Sin} 2 \pi \mathrm{ft}$. Determine the velocity of the end of, spring after 1 second given $\mathrm{a}=2, \mathrm{k}=0.9$ and $\mathrm{f}=5$
d) Given $Z=4 x^{2} y^{3}-2 x^{3}+7 y^{2}$, Find $\frac{\partial z^{2}}{\partial y \partial x}$
e) Show that if $Z=\frac{x}{y} 1$ ny then $\frac{\partial 2}{\partial y}=\frac{\partial \dot{x}^{2}}{\partial y \partial x}$

