

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

KIBIT EXAMINATIONS FOR:
HIGHER DIPLOMA IN BUILDING AND CIVIL ENGINEERING (BUILDING ECONOMICS OPTION)

EBC 3201: MATHEMATICS III
YEAR 2 SEMESTER I
SERIES: DECEMBER 2017
TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Pocket calculator
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.
Mobile Phones are NOT allowed inside the examination room.

QUESTION ONE

(a) Determine area bounded by the function $y=12-x^{2}$ and the x-axis.
(b) Solve the equation $\left(2+\mathrm{x}^{2}\right) \frac{d y}{d x}=2+\mathrm{y}^{2}$ if the equation passes through point $(1,5)$.
(b) The area bounded by the function $y=x^{2}-3$ and x-axis is to be rotated about x-axis through 1 revolution. Find the volume for the solid to be generated.

QUESTION TWO

(a) Solve the following equation:

$$
\begin{equation*}
(\mathrm{x}+\mathrm{y}) \frac{d y}{d x}=\mathrm{x}+\frac{y^{2}}{x} \tag{8Marks}
\end{equation*}
$$

(b) Find the equation of the curve which passes through (1,2) and satisfies the following equation:

$$
\begin{equation*}
2 \mathrm{xy} \frac{d y}{d x}=\mathrm{x}^{2}+1 \tag{5Marks}
\end{equation*}
$$

(c) Determine the particular solution for the following equation:

$$
\begin{equation*}
\frac{d y}{d x}-\frac{y}{x-2}=(x-2)^{2} \quad \text { given } \mathrm{y}=8 \text { when } \mathrm{x}=2 \tag{7Marks}
\end{equation*}
$$

QUESTION THREE

(a) Determine area bounded by the functions $y=x^{3}$ and $y=2$
(b) An area is bounded by the curve $y=\operatorname{Cos}^{2} x$, and lines $y=0$, and $x=\pi / 4$
(i) Calculate the area
(ii) Find volume for the solid of revolution to be generated if the area is rotated about x -axis through revolution.

QUESTION FOUR

(a) Solve the equation;

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-6 y=3 \tag{7marks}
\end{equation*}
$$

(b) The motion of a vibrating body is defined by the following differential equation:

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}=5 \quad \text { where } \mathrm{x} \text { is the displacement in meters. }
$$

Solve the equation given that $\mathrm{t}=0, \mathrm{x}=0$ and $\frac{d x}{d t}=0$ and hence determine the velocity for the body at time $\mathrm{t}=4$ seconds.

QUESTION FIVE

(a) Determine area bounded by the functions $y=4 x^{2}+1$ and $y=1$
(b) Figure 1 shows a T section of a beam. Use the section to determine the following:
(i) Second moment of area about $\mathrm{x} x^{\prime}$ axis.
(ii) Radius of gyration.

Fig. 1

