

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING & CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR:

DIPLOMA IN BUILDING AND CIVIL ENGINEERING
EBC 2209: REINFORCED CONCRETE AND MASONRY DESIGN
END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID

- Pocket calculator
- -Bs 8110: Structural use of concrete, part 1.

This paper consists of **FIVE** questions. Attempt any THREE questions.

Do not write on the question paper.

Mobile phones are not allowed in the examination room.

Question One

- a) Define the following terms as used in structural design giving two examples of each?
 - (i) Dead load.

(ii) Live load (4 marks)

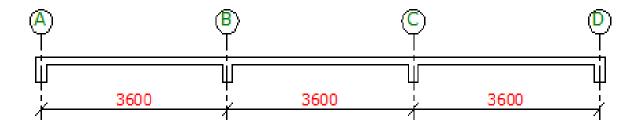
b) A simply supported slab clear dimensions 3.0x3.4 is supported by 200 mm thick block wall all round. It is loaded with 2.5 Kn/m2 live load, assume 50 mm thick screed on the top side and 20 mm plaster on the underside. Using the following material strength,

$$F_{cu} = 25 \text{ N/mm}2$$

Cover to main reinforcements= 20 mm

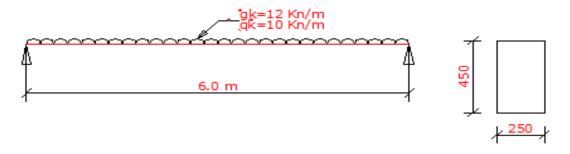
- (i) Design the slab reinforcement and check for shear.
- (ii) Sketch the reinforcement details

(16 marks)


Question Two

The continuous slab shown below carries characteristic imposed load load, qk=3.0 Kn/m2 and has overall depth, h=150 mm. Design the slab using the following material strength.

$$F_{cu} = 20 \text{ N/mm}2$$


$$Fy = 425 \text{ N/mm}2$$

(20 marks)

Question Three

The reinforced concrete beam shown below has an effective span of 6.0 m and carries characteristic dead (including self-weight) and imposed load of 12 Kn/m and 10 Kn/m respectively. Design for bending and shear at all critical points.

$$F_{cu} = 25 \text{ N/mm}^2$$

$$F_y = 425 \text{ N/mm}^2$$

$$F_{yy}=250 \text{ N/mm}^2$$

Cover to main reinforcements = 26 mm

(20 marks)

Question Four

(a) An internal column of a multi-storey building support axial characteristic dead and imposed load of 400 Kn and 250 Kn respectively from a symmetrical arrangement of beams. The column is held in position and direction at the top and bottom, is square, short and braced.

$$Take \ F_{cu} = 30 \ N/mm^2 \ F_y = 425 \ N/mm^2$$

Design.

- (i) A suitable cross section of the column.
- (ii) The size of longitudinal reinforcement.
- (iii) The size and spacing of links.

(12 marks)

b) Compare the properties of the constituent materials of reinforced concrete.

(8 marks)

Question Five

5. Design a square pad resisting axial characteristic dead and imposed loads of 500 Kn and 350 Kn from a 300 mm square column. The safe bearing pressure of the soil = 250 Kn/m^2 .

Assume the following material strength.

$$F_{cu} = 30 \text{ N/mm}^2$$
 $F_y = 460 \text{ N/mm}^2$ (20 marks)
© Technical University of Mombasa Page 3 of 4

Table 1: Values of A_{sv}/S_v

Diameter	Spacing of links(mm)										
of links (mm)	85	90	100	125	150	175	200	225	250	275	300
8	1.183	1.118	1.006	0.805	0.671	0.575	0.503	0.447	0.402	0.336	0.335
10	1.847	1.744	1.57	1.256	1.047	0.897	0.785	0.698	0.628	0.571	0.523
12	2.659	2.511	2.26	1.808	1.507	1.291	1.13	1.004	0.904	0.822	0.753
16	4.729	4.467	4.02	3.216	2.68	2.297	2.01	1.787	1.608	1.462	1.34

Table 2: Cross-sectional area per metre width for various bar spacing (mm²)

Bar	50	75	100	125	150	175	200	250	300
Size									
(mm)									
6	566	377	283	226	189	162	142	113	94.3
8	1010	671	503	402	335	287	252	201	168
10	1570	1050	785	628	523	449	393	314	262
12	2260	1510	1130	905	754	646	566	452	377
16	4020	2680	2010	1610	1340	1150	1010	804	670
20	6280	4190	3140	2510	2090	1800	1570	1260	1050
25	9820	6550	4910	3930	3270	2810	2450	1960	1640
32	16100	10700	8040	6430	5360	4600	4020	3220	2680
40	25100	16800	12600	10100	8380	7180	6280	5030	4190

Table 3: Cross-sectional areas of groups of bars (mm²)

Bar	Number of bars										
Size (mm)	1	2	3	4	5	6	7	8	9	10	
6	28.3	56.6	84.9	113	142	170	198	226	255	283	
8	50.3	101	151	201	252	302	352	402	453	503	
10	78.5	157	236	314	393	471	550	628	707	785	
12	113	226	339	452	566	679	792	905	1020	1130	
16	201	402	603	804	1010	1210	1410	1610	1810	2010	
20	314	628	943	1260	1570	1890	2200	2510	2830	3140	
25	491	982	1470	1960	2450	2950	3440	3930	4420	4910	
32	804	1610	2410	3220	4020	4830	5630	6430	7240	8040	
40	1260	2510	3770	5030	6280	7540	8800	10100	11300	12600	