

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING AND CIVIL ENGINEERING

EBC 2208: STRENGTH OF MATERIALS II

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination

- Answer booklet
- Scientific calculator

This paper consists of **FIVE** questions

Answer any other **THREE** questions

Use neat, large and well labelled diagrams where required

Maximum marks for each part of a question are as shown

This paper consists of $\ensuremath{\textbf{FOUR}}$ printed papers.

ECE 2208: STRENGTH OF MATERIALS II

QUESTION ONE

a) State the assumptions made in the theory of simple bending.

(5 marks)

b) An I-section with unequal flanges of thickness 50mm as shown below is used as a simply supported beam over a span of 7 meters. The beam carries a uniformly distributed load of 5KN/M and a point load of 20KN at mid span. Determine the maximum tensile and compressive stresses. (15marks)

QUESTION TWO

- a) A composite beam consists of a timber and two steel plates rigidly fixed to the top and bottom. Derive the formula for the total moment of resistance. (6 marks)
- b) A composite beam consisting of a 12mm thick steel plate sandwiched between two timber joints. The composite beam is subjected to a bending moment of 6.25KNM. Determine the maximum tensile and compressive stresses developed in steel and timber. Take E_T=10KN/MM² AND E_S=210KN/MM² (14 marks)

QUESTION THREE

The figure below shows a retaining wall of density 2500 Kg/M³ which supports a cohesionless soil of density 1900 Kg/M³ and angle of shearing resistance of 28^o.

Examine the stability conditions of the wall with regards to

- i. Tension in joints
- ii. Ground bearing pressure
- iii. Factor of safety against overturning

(20marks)

QUESTION FOUR

- a) Define the term shear stress distribution.
- b) Sketch the shear stress distribution of the following shapes
 - i. I section
 - ii. rectangular section

- (4 marks)
- c) A rectangular beam 100mm wide by 200mm deep is subjected to a vertical shear force of 5000N. Determine the shear stress distribution at points y=75mm, y=50, y=25 and y=0. Thus plot the shear distribution curve. (14 marks)

(2 marks)

QUESTION FIVE

- a) State the major assumptions made in Rankine earth's pressure theory. (5 marks)
- b) Show that the maximum shear stress in a rectangular section equals to1.5times the average shear stress. (5 marks)
- c) A beam of length 1.3M and cross sectional dimensions 150mm wide by 250mm deep is simply supported and carries a point load W at mid-span. The permissible stresses are 7N/mm² in bending and 1N/mm² in shearing. Calculate the safe load that the beam can carry. (10 marks)

