FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE \& APPLIED SCIENCES UNIVERSITY EXAMINATION FOR: BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY
 ACH 4206 : CHEMICAL PROCESSES SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: AUG 2017
 TIME: 2 HOURS
 DATE: Pick Date Sep 2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, Non-programmable calculator, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

An experiment on the growth rate of certain organisms (e.g., yeasts, bacteria, or viruses) requires an environment of humid air enriched in oxygen. Three input streams are fed into an evaporation chamber to produce an output stream with the desired composition.
A: Liquid water, fed at a rate of $20.0 \mathrm{~cm}^{3} / \mathrm{min}$
B: Air (21 mole $\% \mathrm{O}_{2}$, the balance N_{2})
C: Pure oxygen, with a molar flow rate one-fifth of the molar flow rate of stream B
The output gas is analyzed and is found to contain 1.5 mole $\%$ water.
a) Draw and label a flowchart of the process,
b) Perform a degree of freedom analysis, and
c) Calculate all unknown stream variables.

Question TWO

Formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ is produced industrially by the catalytic oxidation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ by the following reaction:

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{OH}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \tag{i}
\end{equation*}
$$

Unfortunately, under the conditions used to produce formaldehyde at a profitable rate, a significant portion of the formaldehyde can react with oxygen to produce CO and $\mathrm{H}_{2} \mathrm{O}$:

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \tag{ii}
\end{equation*}
$$

Assume that methanol and twice the stoichiometric amount of air needed for complete oxidation of the $\mathrm{CH}_{3} \mathrm{OH}$ are fed to the reactor, that 90% conversion of the methanol results, and that a 75% yield of formaldehyde occurs (based on the theoretical production of $\mathrm{CH}_{2} \mathrm{O}$ by Reaction (i)). Draw and label the process flow diagram. Determine the composition of the product gas leaving the reactor.
(20 marks)

Question THREE

In textile industry, it is desired to make caustic soda solution containing $24 \% \mathrm{NaOH}$ by mass for a mercerization process. Due to the very high heat of dissolution of caustic soda in water, the solution is prepared as follows; first in a dissolution tank caustic soda of $50 \mathrm{wt} . \% \mathrm{NaOH}$ was prepared by mixing 100 kg of solid NaOH with water. It was then fed to the dilution tank where a fraction of feed water is added to produce the desired solution.

a) Calculate the amount of water required
b) Calculate the amount of desired solution produced.
c) Calculate the amount of $50 \mathrm{wt} . \% \mathrm{NaOH}$ solution produced.
d) Calculate the amount of feed water that is bypassed to the dilution tank.
e) Calculate the ratio of water that is bypassed to the dilution tank to that is fed to the process.

Question FOUR

a) CH_{4} burns in O_{2}, producing CO_{2} and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. A $1.22 \mathrm{LCH}_{4}$ cylinder, at $15^{\circ} \mathrm{C}$, registers a pressure of 328 kPa . What volume of O_{2} at STP will be required to react completely with all of the CH_{4} ? (8 marks)
b) Nitroglycerin explodes according to:

$$
4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{~N}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

i. Calculate the volume, at STP, of each product formed by the reaction of 100 g of $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}$.
ii. $\quad 200 \mathrm{~g}$ of $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}$ is ignited (and completely decomposes) in an otherwise empty 50 L gas cylinder. What will the pressure in the cylinder be if temperature stabilizes at $220^{\circ} \mathrm{C}$? (6 marks)

Question FIVE

Liquid acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is fed at a rate of 400 liters $/ \mathrm{min}$ into a heated chamber, where it evaporates into a nitrogen stream. The gas leaving the heater is diluted by another nitrogen stream flowing at a measured rate of $419 \mathrm{~m}^{3}(\mathrm{STP}) / \mathrm{min} @ 25^{\circ} \mathrm{C}$. The combined gases are then compressed to a total pressure $P_{\text {gauge }}=6.3 \mathrm{~atm}$ at a
temperature of $325^{\circ} \mathrm{C}$. The partial pressure of acetone in this stream is $p_{a}=501 \mathrm{mmHg}$. Atm. pressure is 763 mm Hg . (Acetone: Mol. Weight $=58.1, \rho=791 \mathrm{~g} / \mathrm{L}$)
a) What is the molar composition of the stream leaving the compressor?
b) What is the volumetric flow rate of N_{2} entering the evaporator if $T=27^{\circ} \mathrm{C}$ and $P_{\text {gauge }}=475 \mathrm{~mm} \mathrm{Hg}$

