TECHNICAL

UNIVERSITY OF

MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE/

BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER SCIENCE

AMA 4426: STOCHASTIC PROCESSES

END OF SEMESTER EXAMINATION

TIME: 2 HOURS

DATE: MAY 2017

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 5 questions. Attempt ONE AND ANY TWO. Do not write on the question paper.

QUESTION ONE (30 MARKS)

- (a) Define the following:
 - (i) A stochastic process
 - (ii) A Bernoulli process
- (b) Let Y have a geometric distribution given by

$$P(Y = k) = \begin{cases} q^k p; & k = 0, 1, 2, 3, \dots \\ 0; & elsewhere \end{cases}$$

(2 marks)

(2 marks)

(ii) the mean and variance of Y

(c) . Let $\{X_n : n \ge 0\}$ be a Markov chain with three states 0,1,2 and transition probability matrix

$$\begin{pmatrix} \frac{3}{4} & \frac{1}{4} & 0\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\\ 0 & \frac{3}{4} & \frac{1}{4} \end{pmatrix}$$

And the initial probability distribution $P(X_0 = i) = \begin{cases} \frac{1}{4}, i = 0\\ \frac{1}{3}, i = 1\\ \frac{5}{12}, i = 2 \end{cases}$

Find :

(i)
$$P(X_2 = 2, X_1 = 1 / X_0 = 2)$$
 (3marks)

(ii)
$$P(X_1 = 1 / X_0 = 2)$$
 (1 mark)

(iii)
$$P(X_2 = 2 / X_1 = 1)$$
 (1 mark)

(iv)
$$P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$$
 (3 marks)

(d). The joint distribution of two random variables X and Y is given by:

$$P_{jk} = P \{X = j, Y = k\} = \begin{cases} q^{j+k}p^2, & j = 0, 1, 2, \dots, k = 0, 1, 2, \dots, p+q = 1\\ 0 & otherwise \end{cases}$$

©Technical University of Mombasa

(6 marks)

Obtain the:

(i). bivariate p.g.f of X and Y		(4 marks)
(ii). P.g.f of ≯	K	(2 marks)
(iii). P.g.f of	(2 marks)	
QUESTIC (a) Define the	DN TWO (20 MARKS) e following terms :	
(i)	Irreducible Markov chain	(2 marks)
(ii)	Persistent state	(2 marks)
(iii)	A periodic state	(1 mark)
(iv)	Ergodic state	(1 mark)

(b). A markov chain with state space $\{E_1, E_2, E_3\}$ has the following probability transition matrix

$$\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

Classify the states of the process.

(14 marks)

QUESTION THREE (20 MARKS)

Consider a population whose size at time t is Z(t) and let the probability that the population size is n be denoted by $P_n(t) = P\{Z(t) = n\}$ with $P_1(0) = 1$ and $P_n(0) = 0$, $n \neq 1$. Further let :

©Technical University of Mombasa

- (i) The chance that an individual produces a new member in time t interval Δt be $\lambda \Delta t$ where λ is some constant be n. (5 marks)
- (ii) The chance of an individual producing more than one member be $0(\Delta t)$ (i.e negligible). (a) Show that $P_n(t) = e^{-\lambda t} \{1 - e^{-\lambda t}\}^{n-1}$, $n \neq 1$ (5 marks)
 - (b) Find the second raw moment of the process

(10 marks)

QUESTION FOUR (20 MARKS)

(a) Explain the following terms:

(i)	A strictly stationary stochastic process	(2 marks)
(ii)	A covariance stationary process	(2 marks)

(iii) An evolutionary process (2 marks)

b) (i) Write down the differential-difference equations for the Polya process. Hence obtain the probability generating function given that $P_n(0) = 1$ when n = 0 and $P_n(0) = 0$ when $n \neq 0$

(ii) Show that the Polya process is not covariance stationary.

(14 marks)

QUESTION FIVE (20 MARKS)

Consider the difference-differential equations for the Poisson process given by

$$P'_{n}(t) = \begin{cases} -\lambda P_{n}(t) + \lambda P_{n-1}(t) : n \ge 1 \\ -\lambda P_{0}(t) : n = 0 \end{cases}$$

With initial conditions $P_0(0) = 1$ when n = 0 and $P_n(0) = 0$ when $n \neq 0$

- (i) Find the solution of the equation. (10 marks)
- (ii) Use Feller's method to find the mean and variance of the process.

(10 marks)

©Technical University of Mombasa

Page 4 of 4