TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR THE SECOND SEMESTER IN THE FOURTH YEAR OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

MAY 2016 SERIES EXAMINATION

UNIT CODE: AMA 4423

UNIT TITLE: PARTIAL DIFFERENTIAL EQUATIONS II

TIME ALLOWED: 2HOURS

PAPER A

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions and TWO sections \mathbf{A} and \mathbf{B}.
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages.

SECTION A (COMPULSORY)
Question ONE (30 marks)
a. Obtain the solution of the following initial value problem $u_{x x}=4 x y+e^{x}$
with the initial condition $u(0, y)=y, u_{x}(0, y)=1$
b. Show that the Laplace's equation $\nabla^{2} u=0$ is satisfied by the function $u=\frac{1}{r}$
where

$$
u=\frac{1}{\left[\left(x-x_{o}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{1}{2}}}
$$

(6 marks)
c. Consider the following second order partial differential equation:-

$$
x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}=e^{x}
$$

(i) Classify it.
(ii) Reduce to canonical form.
(iii) Find the general solution in terms of arbitrary functions.
d. Use the method of separation of variables to solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ given $u(x, 0)=8 e^{-4 x}$.

SECTION B

Question TWO (20 marks)

a. Show that if Laplace's equation $\nabla^{2} u=0$ in Cartesian coordinate is transformed by introducing plane polar coordinates (r, θ), defined by the relation $x=r \cos \theta$, $y=r \sin \theta$ it takes the form $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$
b. Solve the boundary value problem for a rectangle defined by Laplace's equation PDE: $\quad \nabla^{2} u=0,0 \leq x \leq a, 0 \leq y \leq b$ with the following boundary conditions $\mathrm{BC}^{\prime} \mathrm{s}: \quad u(x, 0)=u(a, y)=0, \quad u(0, y)=0, \quad u(x, b)=0, u(x, 0)=f(x) \quad$ (10 marks)

Question THREE (20 marks)

a. A rod of length l with insulated side is initially at a uniform temperature u_{o}. Its ends are suddenly cooled to 0° and are kept at that temperature.
i. Find the temperature function of this problem
ii. Set up the initial and boundary conditions of the temperature function given

> in (i) above.
iii. Solve the temperature function subject to the initial and boundary conditions in (i)

```
and (ii) above
```


Question FOUR (20 marks)

a. Show that $u(x, t)=2^{-8 t} \sin 2 x$ is a solution to the boundary value problem

$$
\begin{equation*}
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, u(0, t)=u(\pi, t)=0, u(x, 0)=\sin 2 x \tag{7marks}
\end{equation*}
$$

b. An infinitely long string having one end at initially at rest on the x-axis. At $t=0$ the end $x=0$ begins to move along the u-axis in a manner described by $u(0, t)=a \cos \sigma t$.
(a) State the PDE for the one dimensional wave equation of this problem. Show this with an illustration of a sketch diagram.
(b) Using Laplace transform method, find the displacement $u(x, t)$ of the string at any point at any time subject to the boundary conditions and initial conditions given as

$$
\begin{equation*}
\text { B.C } \quad u(0, t)=a \cos \sigma t, \tag{i}
\end{equation*}
$$ $u(x, t)$ bounded as $t \rightarrow \infty$.

I.C

$$
\begin{gather*}
u(x, 0)=0 \tag{iii}\\
u_{t}(x, 0)=0
\end{gather*}
$$

Question FIVE (20 marks)

Using the method of separation of variables, Solve the Neumann problem for a rectangle defined with the following initial and boundary conditions as follows :-

$$
0 \leq x \leq a, 0 \leq y \leq b
$$

$\mathrm{BCs}: u_{x}(0, y)=u_{x}(a, y)=0, \quad u_{y}(x, 0)=0, \quad u_{y}(x, b)=f(x)$

