

TECHNICAL UNIVERSITY

OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR:** DIPLOMA IN MECHANICAL, ELECTRICAL, BUILDING AND CIVIL ENGINEERING YEAR III SEMESTER II AMA 2251: ENGINEERING MATHEMATICS IV END OF SEMESTER EXAMINATION SERIES: DECEMBER 2016 TIME: 2HOURS DATE: Pick Date December 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID Mathematical table, calculator This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions **Do not write on the question paper.**

Question one (compulsory) (30MKS)

Question One (30 Marks)

a)

- i) Determine $L\{e^{-2t} \sin 3t\}$ using Laplace transform tables (2 marks)
- ii) Determine the Laplace transform of $f(x) = t^2$ from first principles

(6 marks)

iii) Determine
$$L^{-1}\left\{\frac{4s-3}{s^2-4s-5}\right\}$$
 (4 marks)

b)

i) Given that y = 1 when $x = 2\frac{1}{6}$, determine the particular solution of $(y^2 - 1)\frac{dy}{dx} = 3y$ (5 Marks)

ii) Use the integrating factor to solve $\frac{dy}{d\theta} = \sec \theta + y \tan \theta$ given the boundary conditions y = 1 when $\theta = 0$ (6 Marks)

c) Determine the Fourier series expansion of the periodic function of period 1

$$f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0\\ \frac{1}{2} - x, & 0 < x < \frac{1}{2} \end{cases}$$

(7 Marks)

Question Two (20 Marks)

a) Given the function f(x) = x, $0 < x < 2\pi$, determine the Fourier series representing the function f(x)

(10 Marks)

b) Determine the Fourier series expansion of the periodic function of period 1, given the function

$$f(x) = \begin{cases} -1 & for \quad -\pi < x < \frac{-\pi}{2} \\ 0 & for \quad \frac{-\pi}{2} < x < \frac{\pi}{2} \\ 1 & for \quad \frac{\pi}{2} < x < \pi \end{cases}$$

(10 Marks)

Question Three (20 Marks)

a) A first order differential equation involving current *i* in a series R - L circuit is given by: $\frac{di}{dt} + 5i = \frac{E}{2}$ and i = 0 and time t = 0. Use Laplace transforms to solve for *i* when $E = 50 \sin 5t$ (10 marks) b) Using Laplace transforms solve the following second order differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x} \sin x, \quad \text{where } y(0) = 0, \ y'(0) = 1 \quad (10 \text{ Marks})$$

Question Four (20 Marks)

- a) Given that $7x(x-y)dy = 2(x^2 + 6xy 5y^2)dx$ is homogeneous in x and y, solve the differential equation taking x = 1 when y = 0 (12 Marks)
- b) The charge q in an electric circuit at time t satisfies the equation

$$L = 2H, C = 200 \times 10^{-6} F \text{ and } E = 250V \text{ when } R = 200\Omega$$
 (8 Marks)

Question Five (20 Marks)

a) Show the following

 $\ell^{3t} = \frac{1}{s-3} \text{, using the definition of Laplace transform} \qquad (3 \text{ marks})$ b) Determine $L^{-1}\left\{\frac{7s+13}{s(s^2+4s+13)}\right\}$ (9 marks)

c) Determine the general solution of $9\frac{d^2y}{dx^2} - 24\frac{dy}{dx} + 16y = 0$, then its particular solution given that x = 0, $y = \frac{dy}{dx} = 3$ (8 Marks)

Table of Laplace Transforms					
	$f(t) = \mathcal{L}^{\ast} \{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathcal{L}^{+}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)}$
1,	1	1 s	2,	e**	$\frac{1}{s-a}$
3.	$t^*, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	4,	$t^{\sigma},p\geq -l$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	√r	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{-\frac{1}{2}}, n-1, 2, 3, \dots$	$\frac{1\cdot 3\cdot 5\cdots(2n-1)\sqrt{\pi}}{2^{n}s^{n+\frac{1}{2}}}$
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	t sin(at)	$\frac{2as}{\left(s^2 + a^2\right)^2}$	10.	$t \cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2 + a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2 + a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s(s^{2}-a^{2})}{(s^{2}+a^{2})^{2}}$	14,	$\cos(at) + at\sin(at)$	$\frac{s(s^2 + 3a^2)}{(s^2 + a^2)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$e^{-t}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	20.	$e^{-cos(bt)}$	$\frac{s-a}{(s-a)^2+b^2}$
21.	$e^{-t}\sinh(bt)$	$\frac{b}{(s-a)^2-b^2}$	22.	$e^{at} \cosh(bt)$	$\frac{s-a}{(s-a)^2-b^2}$
23.	<i>t</i> °e ^{<i>at</i>} , <i>n</i> = 1, 2, 3,	$\frac{n!}{(s-a)^{s+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_{e}(t) = u(t-c)$ Heaviside Function	<u>e***</u>	26.	$\delta(t-c)$ Dirac Delta Function	e
27.	$u_e(t)f(t-c)$	e F(s)	28.	$u_{\epsilon}(t)g(t)$	$e^{-r} \mathcal{L}\{g(t+c)\}$
29.	e" f (t)	F(s-c)	30.	$t^{*}f(t), n = 1, 2, 3,$	$(-1)^{\circ} F^{(*)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{a}^{a} F(u) du$	32.	$\int_{0}^{t} f(v) dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	$f(t\!+\!T)\!-\!f(t)$	$\frac{\int_{0}^{T} e^{-a} f(t) dt}{1 - e^{-aT}}$
35.	f'(t)	sF(s) = f(0)	36.	$f^{*}(t)$	$s^{2}F(s)-sf(0)-f'(0)$
37.	$f^{(s)}(t) = s^{s-1}f(0) - s^{s-1}f'(0) - s^{s-1}f'(0) - s^{s-1}f'(0) - f^{(s-1)}(0) - f^{(s-1)}(0)$				