TECHNICAL UNIVERSITY

OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MECHANICAL, ELECTRICAL, BUILDING AND
CIVIL ENGINEERING
YEAR III SEMESTER II
AMA 2251: ENGINEERING MATHEMATICS IV END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016 TIME: 2HOURS
DATE: Pick Date December 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other
TWO questions
Do not write on the question paper.
Question one (compulsory) (30MKS)
Question One (30 Marks)
a)
i) Determine $L\left\{e^{-2 t} \sin 3 t\right\}$ using Laplace transform tables (2 marks)
ii) Determine the Laplace transform of $f(x)=t^{2}$ from first principles
(6 marks)
iii) Determine $L^{-1}\left\{\frac{4 s-3}{s^{2}-4 s-5}\right\}$
b)
i) Given that $y=1$ when $x=2 \frac{1}{6}$, determine the particular solution of $\left(y^{2}-1\right) \frac{d y}{d x}=3 y$
(5 Marks)
ii) Use the integrating factor to solve $\frac{d y}{d \theta}=\sec \theta+y \tan \theta$ given the boundary conditions $y=1$ when $\theta=0$
(6 Marks)
c) Determine the Fourier series expansion of the periodic function of period 1

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2}+x, & -\frac{1}{2}<x<0 \\
\frac{1}{2}-x, & 0<x<\frac{1}{2}
\end{array}\right.
$$

(7 Marks)

Question Two (20 Marks)

a) Given the function $f(x)=x, 0<x<2 \pi$, determine the Fourier series representing the function $f(x)$
(10 Marks)
b) Determine the Fourier series expansion of the periodic function of period 1, given the function

$$
f(x)=\left\{\begin{array}{rll}
-1 & \text { for } & -\pi<x<\frac{-\pi}{2} \\
0 & \text { for } & \frac{-\pi}{2}<x<\frac{\pi}{2} \\
1 & \text { for } & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

(10 Marks)

Question Three (20 Marks)

a) A first order differential equation involving current i in a series $R-L$ circuit is given by: $\frac{d i}{d t}+5 i=\frac{E}{2}$ and $i=0$ and time $t=0$. Use Laplace transforms to solve for i when $E=50 \sin 5 t$
b) Using Laplace transforms solve the following second order differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=e^{-x} \sin x, \quad \text { where } y(0)=0, y^{\prime}(0)=1 \tag{10Marks}
\end{equation*}
$$

Question Four (20 Marks)

a) Given that $7 x(x-y) d y=2\left(x^{2}+6 x y-5 y^{2}\right) d x$ is homogeneous in x and y, solve the differential equation taking $x=1$ when $y=0$
(12 Marks)
b) The charge q in an electric circuit at time t satisfies the equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E$, where L, R, C and E are constants. Solve the equation given $L=2 H, C=200 \times 10^{-6} F$ and $E=250 V$ when $R=200 \Omega$

Question Five (20 Marks)

a) Show the following

$$
\ell^{3 t}=\frac{1}{s-3}, \text { using the definition of Laplace transform } \quad(3 \text { marks })
$$

b) Determine $L^{-1}\left\{\frac{7 s+13}{s\left(s^{2}+4 s+13\right.}\right\}$
c) Determine the general solution of $9 \frac{d^{2} y}{d x^{2}}-24 \frac{d y}{d x}+16 y=0$, then its particular solution given that $x=0, y=\frac{d y}{d x}=3$

Table of Laplace Transforms

	$f(t)=L^{-\{ }\{F(s)\}$	$F(x)-1 / u^{\prime}(\mathrm{r})$	$f(t)-a^{-(F)}(x)$	$F(r)=-(J T)$
1.	1	$\frac{1}{3}$	2. $4^{\text {mi }}$	$\frac{1}{1-3}$
3.	$t^{\prime \prime}, \quad 101,2,3, \ldots$	$\frac{8!}{5^{n+1}}$	4. $t^{2}, p>1$	$\frac{\Gamma(\beta+1)}{s^{2}}$
5	$\sqrt{5}$	$\frac{\sqrt{z}}{2 r^{2}}$	6. $t^{\prime-}$, $\quad 1=4,2,3, \ldots$	$\frac{1.35 n(2 H-1) \sqrt{7}}{2 s^{2+}}$
7.	$\sin [a]$	$\frac{a}{3^{2}+a^{2}}$	8. $\cos (a)$	$\frac{s}{3^{2}+1^{2}}$
9.	$\operatorname{tsin}(2 r)$	$\frac{2 u}{\left(x^{2}+s^{2}\right)^{2}}$	10. $\operatorname{tax}(2 \mathrm{ar})$	$\frac{s^{2}-a^{2}}{\left(x^{2}+a^{2}\right)^{2}}$
11.	$\sin (a)=\operatorname{sincs}(a r)$	$\frac{2 u^{3}}{\left(s^{2}+s^{2}\right)^{2}}$	12. $\sin [4])+\Delta \cos (a r)$	$\frac{ \pm x^{2}}{\left(s^{2}+z^{4}\right)^{2}}$
13.	$\cos (a)=-\sin \left(a^{2}\right)$	$\frac{s\left(s^{2}-u^{2}\right)}{\left(s^{2}-u^{2}\right)^{2}}$	14. $\cos (a) \mid+\operatorname{arc}(a)$	$\frac{3\left(x^{2}+3 x^{2}\right)}{\left(x^{2}+a^{2}\right)^{2}}$
13.	$\sin (x-b)$	$\frac{3 \sin (b)+\operatorname{secs}(b)}{s^{2}+a^{2}}$	16. $\cos (a y+b)$	$\frac{\operatorname{sas}(\mathrm{t})-\mathrm{s} \sin (b)}{3^{2}+a^{2}}$
17.	$\sinh [4]$	$\frac{a}{3^{2}-a^{2}}$	18. $\cosh (a)$	$\frac{3}{3^{2}-a^{2}}$
19.	$e^{-3} \sin (t)$	$\frac{b}{(r-a)^{2}+b^{2}}$	20. $4^{\cos } \cos (\mathrm{b}]$	$\frac{s-a}{(r-a)^{2}+b^{2}}$
21.	$e^{* *} \sinh (\mathrm{br}]$	$\frac{b}{(s-a)^{2}-b^{2}}$	23. ${ }^{\text {max }}$ goch(hr)	$\frac{s-a}{(5-a)^{2}-b^{3}}$
23.		$\frac{n!}{(r-a)^{n+1}}$	$24 . f(\mathrm{rr})$	$\frac{1}{4} F\left(\frac{s}{2}\right)$
24.	$\begin{aligned} & u_{n}(t]-u(t-d) \\ & \text { Henvite Furction } \end{aligned}$	$\frac{e^{-x}}{5}$	26. $8(t-c)$ Dine Delman Futisn	$e^{-1 /}$
27.	$y_{u}(t) J(r-a)$	$\mathrm{c}^{-m} F(s)$	28. 4 (t) $\mathrm{E}(\mathrm{t})$	$\mathrm{e}^{-2 \prime 2}[\underline{L}(t+2)]$
34.	$e^{\text {er }} f^{\prime}(\mathrm{r})$	$F(s-c)$		$(-1)^{*} F^{(s)}(s)$
31.	$\frac{1}{i} j^{\prime}(\mathrm{r})$	$\int_{-0}^{12} F[4] d u$	32. $\int_{0}^{-1}(v) d$	$\frac{F(r)}{3}$
33.	$\int_{-2} f^{\prime}(f-r) g(t) d t$	$F(s) 6(s)$	34. $\quad(t-T)-J(t)$	$\frac{0^{-5} e^{-x} f^{-1}(t) d x}{1-e^{-a r}}$
35.	$f(r)$	$S F(s)=f(0)$	36. $\quad(1)$	$s^{2} F(r)-s^{\prime}(0)-J^{\prime \prime}(0)$
37.	$J^{[0]}(\mathrm{l})$	$y^{\prime \prime F}(x)=$	$f(0)-y^{-4} j^{\prime}(0)-\cdots y^{(-2)}$	$]=y^{-10}[0]$

