FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS\& PHYSICS

UNIVERSITY EXAMINATION FOR:
DIPLOMAIN MECHANICAL ENGINEERING AMA 2251:ENGINEERING MATHEMATICS IV
END OF SEMESTER EXAMINATION
SERIES:AUGUST2017
TIME:2HOURS
DATE:Pick DateAug2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
Scientific calculator
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions Do not write on the question paper.

Question One

a) The velocity of a body, V is equal to the rate of change of distance $\frac{d x}{d t}$. Determine the equation for x in terms of t, given $V=u+a t$ where u and a are constants and $x=0$, when $t=0$:
(4 marks)
b) Solve the differential equation:

$$
9 \frac{d^{2} y}{d y^{2}}=12 \frac{d y}{d t}+4 y=0
$$

Given

$$
\begin{equation*}
y=3 \text { when } t=0 \text { and } \frac{d y}{d t}=4 \text { when } t=0 \tag{8marks}
\end{equation*}
$$

c) Obtain the inverse of the laplace transform function

$$
\left\{\frac{4 S^{2}-5 S+6}{(S+1)\left(S^{2}+4\right)}\right\}
$$

(7 marks)
d) The periodic function $y=f(x)$, of period 2π is defined between $x=0$ and $x=\pi$ by the function value given in table 1. If the function is known to contain odd harmonics only:
(i) Show that $a_{0}=0$
(ii) Determine a_{1}
(iii) Determine b_{1}
(11 marks)
Table 1

x^{0}	0^{0}	30^{0}	60^{0}	90^{0}	120^{0}	150^{0}	180^{0}
y	0	8.0	11.5	6.0	4.0	5.4	0

Question Two

a) Solve the differential equation:
$(y-x) \frac{d y}{d x}-\frac{y^{2}}{x}-y+X^{2} / y \quad$ Given that $x=1$ when $y=3$
(8 marks)
b) An equation of Motion may be represented by the equation

$$
d v / d t+K v^{2}=0 \text { where }
$$

V is the velocity of a body traveling in a restraining medium.

Show that:
$V=\frac{V_{0}}{1+K t V_{0}}$
Given that:

$$
V=V_{0} \text { when } t=0
$$

c) Solve the differential equation:

$$
\begin{equation*}
\mathrm{x} \frac{d y}{d x}=y+x^{2}-2 x \quad \text { given } X=1 \text { when } y=3 \tag{7marks}
\end{equation*}
$$

Question Three

a) Solve the differential equation:
$6 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-4 y=0, \quad$ Given $y=11$ when $=0$ and $\frac{d y}{d x}=0$ when $x=0 \quad(\mathbf{8}$ marks)
b) Solve the differential equation:

$$
\begin{equation*}
15 \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-y=3 X+65 \operatorname{Sin} X \tag{12marks}
\end{equation*}
$$

Question Four

a) Obtain from first principles:
(i) $L\{t)$
(4 marks)
(ii) $L\left\{e^{a t}\right\}$
(3 marks)
b) Obtain using the appropriate shift theorem the laplace transform of
(i) $\{t \sin 2 t\}$
(3 marks)
(ii) $\left\{e^{-3 t} \operatorname{Sin} 2 t\right\}$
c) Solve the equation $\frac{d x}{d t}+2 x=10 e^{3 t}$ given that at $t=0 ; X=6$

Question Five

The values of $f(x)$, a periodic function of period 2π, at intervals of 30° from $X=0^{\circ}$ and $X=360^{\circ}$ are as given in table 1 .

Table 1

X^{0}	0^{0}	30^{0}	60^{0}	90^{0}	120^{0}	150^{0}	180^{0}	210^{0}	240^{0}	270^{0}	300^{0}	330^{0}	360^{0}
$f(x)$	1.4	1.6	2.0	2.1	1.9	1.1	0.4	0.4	0.7	0.6	0.5	1.0	1.4

Determine the corresponding Fourier series for $f(x)$ up to the second harmonics. ($\mathbf{2 0} \mathbf{~ m a r k s}$)

