

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS& PHYSICS

UNIVERSITY EXAMINATION FOR:

DIPLOMAIN MECHANICAL ENGINEERING

AMA 2251: ENGINEERING MATHEMATICS IV

END OF SEMESTER EXAMINATION

SERIES:AUGUST2017

TIME:2HOURS

DATE: Pick Date Aug 2017

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID*

Scientific calculator

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions **Do not write on the question paper.**

Question One

a) The velocity of a body, V is equal to the rate of change of distance $\frac{dx}{dt}$. Determine the equation for x in terms of t, given V = u + at where u and a are constants and x = 0, when t = 0:

(4 marks)

b) Solve the differential equation:

$$9\frac{d^2y}{dy^2} = 12\frac{dy}{dt} + 4y = 0$$

Given

$$y = 3$$
 when $t = 0$ and $\frac{dy}{dt} = 4$ when $t = 0$ (8 marks)

c) Obtain the inverse of the laplace transform function

$$\left\{ \frac{4S^2 - 5S + 6}{(S+1)(S^2 + 4)} \right\}$$
 (7 marks)

- d) The periodic function y = f(x), of period 2π is defined between x = 0 and $x = \pi$ by the function value given in table 1. If the function is known to contain odd harmonics only:
 - (i) Show that $a_0 = 0$
 - (ii) Determine a_1
 - (iii) Determine b_1

(11 marks)

Table 1

x^0	00	300	600	900	1200	150 ⁰	180^{0}
У	0	8.0	11.5	6.0	4.0	5.4	0

Question Two

a) Solve the differential equation:

$$(y-x)\frac{dy}{dx} - \frac{y^2}{x} - y + \frac{X^2}{y}$$
 Given that $x = 1$ when $y = 3$ (8 marks)

b) An equation of Motion may be represented by the equation

$$\frac{dv}{dt} + Kv^2 = 0$$
 where

V is the velocity of a body traveling in a restraining medium.

Show that:

$$V = \frac{V_0}{1 + KtV_0}$$

Given that:

$$V = V_0 \text{ when } t = 0$$
 (5 marks)

c) Solve the differential equation:

$$x \frac{dy}{dx} = y + x^2 - 2x$$
 given $X = 1$ when $y = 3$ (7 marks)

Question Three

a) Solve the differential equation:

$$6\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 4y = 0$$
, Given $y = 11$ when $y = 0$ and $y = 0$ when $y = 0$ (8 marks)

b) Solve the differential equation:

$$15\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - y = 3X + 65SinX$$
 (12 marks)

Question Four

a) Obtain from first principles:

(i)
$$L(t)$$
 (4 marks)

(ii)
$$L\{e^{at}\}$$
 (3 marks)

b) Obtain using the appropriate shift theorem the laplace transform of

(i)
$$\{t \sin 2t\}$$
 (3 marks)

(ii)
$$\left\{e^{-3t}Sin2t\right\}$$
 (3 marks)

c) Solve the equation $\frac{dx}{dt} + 2x = 10e^{3t}$ given that at t = 0; X = 6 (7 marks)

Question Five

The values of f(x), a periodic function of period 2π , at intervals of 30° from $X = 0^{\circ}$ and $X = 360^{\circ}$ are as given in table 1.

Table 1

X^{0}	0_0	30^{0}	60^{0}	90^{0}	120^{0}	150^{0}	180^{0}	210^{0}	240^{0}	270^{0}	300^{0}	330^{0}	360^{0}
f(x)	1.4	1.6	2.0	2.1	1.9	1.1	0.4	0.4	0.7	0.6	0.5	1.0	1.4

Determine the corresponding Fourier series for f(x) up to the second harmonics. (20 marks)