TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING
UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MEDICAL ENGINEERING
AMA2250: ENGINEERING MATHEMATICS III
END OF SEMESTER EXAMINATION
SERIES:DECEMBER2016
TIME:2HOURS
DATE:11Dec2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions.
Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE (COMPULSORY)

(a) Write down the following expansions of the determinant

$$
|C|=\left|\begin{array}{ccc}
3 & 1 & -2 \\
1 & 0 & 2 \\
-3 & -1 & 4
\end{array}\right|
$$

(i) By first row
(ii) By second row
(iii) By $3^{\text {rd }}$ column
(iv) By last row
and check that they all lead to the same result.
(10 marks)
(b) If $\boldsymbol{a}=2 \boldsymbol{i}+4 \boldsymbol{j}-5 \boldsymbol{k}$ and $\boldsymbol{b}=3 \boldsymbol{i}-2 \boldsymbol{j}+6 \boldsymbol{k}$ determine:
(i) $\boldsymbol{a} \cdot \boldsymbol{b}$
(ii) $|\boldsymbol{a}+\boldsymbol{b}|$
(iii) $\boldsymbol{a} \times \boldsymbol{b}$
(iv) the angle between \boldsymbol{a} and \boldsymbol{b}
(14 marks)
(c) Two impedances, $z_{1}=(2+j 7)$ ohms and $z_{2}=(3-j 4)$ ohms, are connected in series to a supply voltage V of $150 \angle 0^{\circ} V$. Determine the magnitude of the current I and its phase angle relative to the voltage. (6 marks)

Question TWO

(a) State any FIVE properties of determinants.

(b) For the system of equations
$2 x+3 y+z=9$
$x+2 y+3 z=6$
$3 x+y+2 z=8$
compute the unknowns x, y and z using the inverse matrix method.

Question THREE

(a) Evaluate, in polar form $2 \angle 30^{\circ}+5 \angle-45^{\circ}-4 \angle 120^{\circ} \quad$ (8 marks)
(b) Use Cramer's rule to solve the equations:

$$
\begin{align*}
& 3 x+2 y-z=0 \\
& 2 x-y+z=1 \\
& x-y+2 z=-1 \tag{12marks}
\end{align*}
$$

Question FOUR

(a) State whether the following are scalar or vector quantities:
i). A temperature of $50 \circ \mathrm{C}$
ii). A downward force of 80 N
iii). A south-westerly wind of 15 knots
iv). An acceleration of $25 \mathrm{~m} / \mathrm{s}^{2}$ at $30 \circ$ to the horizontal (4 marks)
(b) If $z=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$ and $w=3\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$, find the polar form of:
i). $z w$
ii). $\frac{z}{w}$
iii). $\frac{w}{z}$
iv). $\frac{z^{5}}{w^{2}}$
(11 marks)
(c) Given that $C=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$ and $D=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$, Compute the products $C \cdot D$ and $D \cdot C$
(5 marks)

Question FIVE

(a) Find the rational number k for which the matrix $A=\left[\begin{array}{ccc}1 & 2 & k \\ 3 & -1 & 1 \\ 5 & 3 & -5\end{array}\right]$ is singular.
(b) Let $z_{1}=5+2 i, z_{2}=1+3 i, z_{3}=2-3 i, z_{4}=-4-7 i$.
i). Plot the complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$ on an Argand diagram and label them
ii). Plot the complex numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ on the same Argand diagram. Geometrically, how do the positions of the numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ relate to z_{1} and z_{2} ?
(16 marks)

