

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2250: ENGINEERING MATHEMATICS III

END OF SEMESTER EXAMINATION

SERIES:DECEMBER2016

TIME:2HOURS

DATE:11Dec2016

tum

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE (COMPULSORY)

(a) Write down the following expansions of the determinant

	$ C = \begin{vmatrix} 3 & 1 & -2 \\ 1 & 0 & 2 \\ -3 & -1 & 4 \end{vmatrix}$		
(i)	By first row	(ii)	By second row
(iii)	By 3 rd column	(iv)	By last row

and check that they all lead to the same result.

(b) If $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$ determine:

(i) $\boldsymbol{a} \cdot \boldsymbol{b}$ (ii) $|\boldsymbol{a} + \boldsymbol{b}|$ (iii) $\boldsymbol{a} \times \boldsymbol{b}$ (iv) the angle between \boldsymbol{a} and \boldsymbol{b}

(14 marks)

(10 marks)

(c) Two impedances, $z_1 = (2 + j7)$ ohms and $z_2 = (3 - j4)$ ohms, are connected in series to a supply voltage *V* of $150 \ge 0^{\circ}V$. Determine the magnitude of the current *I* and its phase angle relative to the voltage. (6 marks)

Question TWO

(a)	State any FIVE properties of determinants.	(5 marks)
(b)	For the system of equations	
	2x + 3y + z = 9	
	x + 2y + 3z = 6	
	3x + y + 2z = 8	
	compute the unknowns x , y and z using the inverse matrix method.	(15 marks)

Question THREE

- (a) Evaluate, in polar form $2 \angle 30^\circ + 5 \angle -45^\circ 4 \angle 120^\circ$ (8 marks)
- (b) Use Cramer's rule to solve the equations:

3x + 2y - z = 0	
2x - y + z = 1	
x - y + 2z = -1	(12 marks)

Question FOUR

- (a) State whether the following are scalar or vector quantities:
 - i). A temperature of $50 \circ C$
 - ii). A downward force of 80N
 - iii). A south-westerly wind of 15 knots

iv). An acceleration of
$$25m/s^2$$
 at $30 \circ$ to the horizontal (4 marks)

(b) If
$$z = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
 and $w = 3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$, find the polar form of:
i). zw ii). $\frac{z}{w}$ iii). $\frac{w}{z}$ iv). $\frac{z^5}{w^2}$

(11 marks)

(c) Given that
$$C = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, Compute the products $C \cdot D$ and $D \cdot C$ (5 marks)

Question FIVE

(a) Find the rational number k for which the matrix $A = \begin{bmatrix} 1 & 2 & k \\ 3 & -1 & 1 \\ 5 & 3 & -5 \end{bmatrix}$ is singular. (b) Let $z_1 = 5 + 2i$, $z_2 = 1 + 3i$, $z_3 = 2 - 3i$, $z_4 = -4 - 7i$.

- - i). Plot the complex numbers z_1 , z_2 , z_3 , z_4 on an Argand diagram and label them
 - ii). Plot the complex numbers $z_1 + z_2$ and $z_1 z_2$ on the same Argand diagram. Geometrically, how do the positions of the numbers $z_1 + z_2$ and $z_1 - z_2$ relate to z_1 and z_2 ?

(16 marks)