TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (INDUSTRIAL OPTION)

BTAC 15S SEPT 2015

PHYSICAL CHEMISTRY II ACH 4208 END OF SEMESTER EXAMINATION

SERIES: DEC 2016

TIME:2 HOURS

DATE:

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of FIVE questions. Attempt Question one compulsory and any other two question **Do not write on the question paper.**

Paper two

QUESTION ONE

- A. Define
 - i. standard enthalpy of formation (iii) Liquefaction of gases
 - ii. activity of ideal gases
- (iv) heat capacity

8 marks

B. At 20°C the standard EMF of the cell Hg|Hg₂Cl₂(s) | HCl(aq) H2, Pt is 0.2692V and at 30°C it is 0.2660V. Find the values of change in free energy, Enthalpy of reaction and entropy change at 25°C.

Reaction is $0.5Hg_2Cl_2(s) + 0.5H_2(g) Hg(l) + HCl(aq)$

7 marks

C. Calculate the standard free energy change for the following reaction at 25° c. Given standard enthalpies of formation of Fe₂O₃(g), CO(g), Fe(S) and CO₂(g) as -824.3, -110.5,0 and 393.5 Kilojoules per mole respectively wile Entropies of Fe₂O₃(g), CO(g), Fe(S) and CO₂(g) as 87.4, 197.6, 27.3 and 213.6 joules per kilo mole respectively.

 $Fe_2O_3(g) + CO(g) \longrightarrow Fe(S) + CO_2(g)$

8 marks

D. Sketch phase diagram for a substance X (not specific substance) dissolve in ice using the following data and identify Eutectic and congruent melting points 7 marks

Composition in mole	20	30	25	35
percent				
Temperature ⁰ C	-20	-10	5	10
Compound			X .4H ₂ O	X. 2H ₂ O

QUESTION TWO

- A. Differentiate between Incongruent melting and Congruent melting 4 marks
 - B. During combustion of 1.5 grams of Naphthalene C₈ H₁₀ in constant volume colorimeter, temperature of 1500 grams water rose from 15.17°C to 22.84°C. given heat capacity of Naphthalene as 1.8 x 10³ Joules /°C and specific heat of water as 4.184J/°C.g calculate Molar Enthalpy of combustion of Naphthalene 6 marks
 - C. Differentiate between path function and state function

3 marks

D. Given standard enthalpies of formation of $NH_4NO_3(s)$, NH_4^+ (aq), NO_3^- (aq) as -365.56, -132.51 and -205.0 Kilojoules per mole respectively and standard Entropies of NH₄NO₃(s), NH₄⁺ (aq), NO₃ (aq) as 151.08, 113.4 and 146.4 joules per kilo mole respectively Calculate standard free energy change at 25°c for the reaction:

Reaction $NH_4NO_3(s) + H_2O(l) \rightarrow NH_4^+ (aq) + NO_3^- (aq)$

7 marks

QUESTION THREE

A. Given partial pressures at 300 kelvin fo the following equilibrium as C $H_4(g)$ as 0.320, $CS_2(g)$ as 0.252, H₂S as 0.125 and H₂(g) as 0.1 Calculate change in free energy and Predict if below equilibrium is spontaneous or non spontaneous

Reaction
$$CH_4(g) + 2H_2S(g)$$
 $CS_2(g) + 4H_2(g)$ 6 marks

B. Outline the importance of gas Liquefaction

4 marks

- C. Change in free energy and entropy During adiabatic isothermal compression of one mole of an ideal gas at 300 kelvin from 101.3 KPa to 10.13MPa.calculate y. 4 marks
- D. Calculate the enthalpy of formation of KOHs

$$K_s + O_2 + H_{2g}$$

Using the following data I.
$$2K_s + 2 H_2O_1$$
 \longrightarrow $2KOH_{aq} + H_{2g}$ $\Delta H_1 = -376.6Kj$ II. $2 H_{2g} + O_2$ \longrightarrow $2 H_2O_1$ $\Delta H_2 = -577.4Kj$ III. $2KOH_s + aq$ \longrightarrow KOH $\Delta H_3 = -58.58Kj$

QUESTION FOUR

- A. The critical constant of chlorine are Pc = 45.0 atmospheric and Vc = 275.8 L per mol calculate Vander Waals constants a and b
- B. Two liquids A and B form ideal solution. At 300 K, the vapour pressure of a solution containing 1 mole of A and 3 moles of B is 550 mm of Hg. At the same temperature, if one more mole of B is added to this solution, the vapour pressure of the solution increases by 10 mm of Hg. Determine the vapour pressure of A and B in their pure states.

6 marks

C. At 30 °C combustion of hydrocarbon at constant pressure release 515.3kj determine Work done

Reaction $C_X H_{N(L)} + 12 O_{2(g)} - CO_{2(g)} + 5 H_2O_{(L)}$ 6marks

D. state Joule-Thomson effect 4 marks

QUESTION FIVE

- A. An aqueous solution containing 28% by mass of a liquid A (moleculer Mass = 140) has a vapour pressure of 160 mm at 37°C. Find the vapour pressure of the pure liquid A. (The vapour pressure of water at 37°C is 150 mm).

 6 marks
- B. Define
 - i. Equilibrium thermodynamics
- ii. Non-equilibrium
 C. Sketch a well label diagram of water showing all phases at equilibrium
 6 marks
- D. state zeroth law of thermodynamics 3 marks