TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
DIPLOMA IN NAUTICAL SCIENCE
AMA 2213: MATHEMATICS 11
END OF SEMESTER EXAMINATION
SERIES:AUGUST2017
TIME:2HOURS
DATE:Pick DateSep2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

a).Express the equations:
i). $x^{2}+y^{2}=3 y$ in polar form
(3marks)
ii).). $r^{2}=5 \csc 2 \theta$ In Cartesian form
(3marks)
b).On commencing employment, a man is paid a salary of Ksh. 880,000 per annum, and receives an annual
increment of ksh. 3600 .
Determine his:
i). Salary in the eighth year
(3marks)
ii).Total earnings in the first 9 years.
b).Given that:

$$
f(x)=\frac{3 x-1}{2 x+1} \quad \text { find } \quad f^{-1}(1)
$$

(6marks)
c). Solve the equation $\sin 3 x+\sin x=0$ for values of x , where $-180^{\circ}<x<180^{\circ}$ (7 marks)
d). Differentiate using first principle $\quad y=3 x^{-2}+2 x$ marks)

Question TWO

a). Sketch the region bounded by the curve. $y=x^{3}-5 x^{2}+4 x$ and the lines $x=$ 0 and $x=3$
and hence use integration to find the area of the region defined.
(12 marks)
b).The table shows the number of items and their corresponding costs:

Number of items (x)	Cost per item(y) in ksh.
2	48
4	54
8	68
5	75
10	88

Determine the product moment correlation coefficient between the two variables and comment on the results.
(8 marks).

Question THREE

a).Obtain the value of k for which $(k+1),(k-5),(k-2) \ldots \ldots \ldots$ is a Geometric progression Hence find the sum of the first 12 terms.
(9 marks)
b).A plane flies due east and then due south in kilometers between London $\left(51.30^{0} \mathrm{~N}, 0.10^{0} \mathrm{~W}\right)$ and

Mecca $\left(21.26^{0} N, 39.49^{0} E\right)$.Determine the distance travelled.
Take the circumference of the earth to be 40074 km .
(11 marks)

Question FOUR

a).Given that:
$8 \cos \theta+25 \sin \theta=R \cos (\theta-\alpha) \quad$ where $R>0$ and $\quad 0^{0} \leq \theta \leq 360^{\circ}$
i). Find the values of R and α marks)
ii). Solve the equation $8 \cos \theta+25 \sin \theta=2$ for $0^{0} \leq \theta \leq 360^{\circ}$ (6marks)
b).Expand $(5+x)^{\frac{1}{3}}$ up to the term x^{3} and hence evaluate $\sqrt[3]{5.1}$ to 5 decimal places. (10marks)

Question FIVE

a).The parametric equation of an ellipse is given by: $x=7 \cos t, y=4 \sin t$ where t is the parameter. Show that the Cartesian form of this equation is: $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$ marks)
b) A mechanical system is subjected to three forces A, B and C in such a way that :

$$
\begin{aligned}
& 2 A+3 B+4 C=13 \\
& 3 A-4 B+5 C=9 \\
& 6 A+2 B-3 C=2
\end{aligned}
$$

Determine the magnitude of the forces A, B and C .
(10 marks)

