PAPER 2

TECHNICAL

UNIVERSITY OF

MOMBASA

Faculty of Engineering & Technology

Department of Electrical & Electronics

UNIVERSITY EXAMINATION FOR:

Diploma in Electrical and Electronic Engineering

AMA 2151 ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION

SERIES: December 2016

TIME: Two HOURS

Instructions to Candidates

You should have the following for this examination Answer Booklet, examination pass and student ID, Scientific Calculator & No Mobile Phone. This paper consists of five questions. Attempt Question One **COMPULSORY** and any other TWO questions. Maximum marks for each part of a question are as shown.

Maximum marks for each part of a question are as shown. This paper consists of **THREE** printed pages

Do not write on the question paper.

QUESTION ONE (COMPULSORY)

(a)	Determine from first, principles the derinative $f(x) = \frac{1}{5x^2 + 2x^2}$	(5
	5X+5	(5 marks)
(b)	Given $u = x^2y + \underline{y}$ find du x	(3 marks)
(c)	Given that $f(x) = x^2$ express as simply as possible f(a+h) - f(a) (h + 0)	
	h	(4 marks)
(d)	If $x^3 + y^3 + 3xy^2 = 8$ find $\frac{dy}{dx}$	(4 marks)
(a)	Evaluate $\int \sqrt{(a^2-x^2)} dx$ by putting $x = asin\Theta$ -	(7 marks)
(b)	Find the value of	
	$ \begin{array}{rcl} \text{Lim} & & \frac{3x^2 + 4x - 2}{5x^2 - xr6}\\ \end{array} $	
	by putting $x = \frac{1}{h}$ and $h - 0$.	(3 marks)
(c)	Determine $\int \frac{7xdx}{\sqrt{(8x^2+4)}}$	(4 marks)
QUE	STION TWO:	
(a)	Find the gradient at the point (1, 2) on the curve $y = x^3+3x^2-x-1$	(3 marks)
(b)	A box with sides of length x, y, zmm is expanding along the x and y sides at a rate of 2 and 3mm per second but contracting along the z side at a rate of 4mm per second. Find the rate of	<i>(</i> 7 1)
	change of volume when $x = y = 10$ mm, $z = 20$ mm	(5 marks)
(c)	If $x = t^3 + t^2$, $y = t^2 + t$. Find $\frac{dy}{dx}$ in terms of t. dx	(4 marks)
(d)	Sketch the curves $y = 4 - x^2$ and $y = x^2 - 2x$, then find the area enclosed between the two curves	(8 marks)
QUE	STION THREE:	
(a)	Find the maximum and minimum of the function $y = x^3 + 6x^2 - 36x + 5$	(6 marks)

- (b) Find the equation of the normal to the curve $y = (x^2+x+1)(x-3)$ at the point where it cuts the x – axis. (Take x^2+x+1) as having no real roots)
- A pin moves along a straight guide so that is velocity v(cm/s) when it is distance x(cm) from the beginning of the guide at time t(s) is as given in the table below

t(s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
V(cm/s)	0	4.00	7.94	11.6	14.97	17.39	18.25	16.08	0

Apply Simpsons rule using 8 intervals, to find the approximate total distance travelled by the pin between t = 0 and t = 4 (9 marks)

QUESTION FOUR:

(a)	Given $\cos^4\Theta = \frac{1}{4} (1 + \cos^2\Theta)^2$	
	Evaluate ∫Cos4⊖d⊖	(5 marks)

- (b) The area of the segment cut off by Y = 5 from the curve $y = x^2 + 1$ is rotated about the x axis. Find the volume generated (8 marks)
- (c) Show that $V = (Ar^n + \underline{B}) \cos(n\Theta)$

Satisfies the equation

$$\frac{d^2y}{dr^2} + \frac{1}{rdr} \frac{dv}{r^2} + \frac{1}{r^2} \frac{d^2y}{d\Theta^2} = 0$$
(7 marks)

QUESTION FIVE:

(a)	Evaluate (i) $\int x \sqrt{(3x-1)} dx$ by substitution	(4 marks)		
	$\int \frac{x+1}{x^2-3x+2} dx \qquad \text{by partial fractions}$	(5 marks)		
(b)	Given cash $x = \frac{1}{2} (e^x + e^{-x})$ and Shinex = $\frac{1}{2} (e^x - e^{-x})$ Show that for tanh ⁻¹ x, = $\frac{1}{2} \ln (\frac{1+x}{1-x})$	(6 marks)		
(c)	Evaluate			
	I = $\int_{1^{3}} \int_{1^{1}} \int_{0^{2}} (x + 2y - z) dx dy dz$	(5 marks)		

(5 marks)