PAPER 1

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering \& Technology
Department of Electrical \& Electronics

UNIVERSITY EXAMINATION FOR:

Diploma in Electrical (Instrumentation and Control Engineering)

AMA 2151 MATHS II

END OF SEMESTER EXAMINATION
 SERIES: December 2016
 TIME: two HOURS

tum

Instructions to Candidates

You should have the following for this examination
Answer Booklet, examination pass and student ID, Scientific Calculator \& No Mobile Phone.
This paper consists of five questions. Attempt question one compulsory and any other two.
Maximum marks for each part of a question are as shown.
This paper consists of THREE printed pages
Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) (i) Determine the derivative of

$$
y=3 x^{2}+7 x \quad \text { from first principles }
$$

(ii) Find the gradient at the point ($\mathrm{x}_{1} \mathrm{y}$) on the point ($\mathrm{x}_{1} \mathrm{y}$) on the curve $x^{2}+y^{3}=3 a x y$
(iii) Find the differential coefficient of $y=\tan x$
(iv) Evaluate $\int \mathrm{x}^{4} \operatorname{Cos} 5 \mathrm{x}^{5} \mathrm{dx}$ using substitution method
b) (i) Given $\mathrm{Z}=\frac{1}{\sqrt{x^{2}+y^{2}}}$ Find $\frac{\mathrm{dz}}{\mathrm{dy}}$
(ii) Evaluate Sinh 1.275
c) Determine
(i) $\quad \int_{0}{ }^{2}\left(\mathrm{x}^{2}+3 \mathrm{x}-1\right) \mathrm{dx}$
(ii) $\int \cos (5 x+2) d x$
d) Find the volume generated when plane figure bounded by $y=5 \cos 2 x$, the x axis and ordinate at $x=0$ and $y=x / 4$ rotates the x-axis through complete revolution

QUESTION TWO:

(a) (i) Find the co-ordinates of turning point of the curve

$$
y=\frac{2 x^{3}}{3}-5 x^{2}+12 x-7
$$

(ii) Distinguish whether its maximum or minimum
(iii) Use Simpsons rule with $\mathrm{n}=10$ to approximate the intergral $\int_{0}{ }^{1} \mathrm{e}^{\mathrm{x} 2}$ and compare the result with midpoint rule with $\mathrm{n}=10$

QUESTION THREE:

(a) Evaluate $\int_{2}^{4} \frac{x^{2}-2 x^{2}-3 x-2}{(x+2)(x-1)} d x$ using partial fractions
(b) Find the equation of tangent and normal to the curve

$$
\begin{equation*}
y=x^{3}-2 x^{2}+3 x-1 \text { at }(2,5) \tag{5marks}
\end{equation*}
$$

(c) Show that $\frac{d^{2} y}{d^{2}}+\underline{d y}-6 y=0$ given

$$
\begin{equation*}
y=A e^{2 x}+B e^{-3 x} \tag{5marks}
\end{equation*}
$$

(a) Find dy given $y=2 \operatorname{Sin} \theta \cos \theta$
dx

QUESTION FOUR:

(a) Evaluate

$$
\operatorname{Lim}_{x-3} \frac{2 x+3}{x-4}
$$

(b) Given $y=2 x e^{-3 x}$ show that $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0$
(c) Use quotient rule to find the gradient of $y=\left(\frac{x^{2}+4 x+1}{2}\right)$
at the point $(1,1)$
(d) (i) The domain of the function $(f(x)$ is $\{1,2,3,4,5\}$ find the range if $\left(f(x)=5 x^{2}+3\right.$
(ii) Differentiate the following implicitly

$$
\begin{equation*}
\operatorname{Sin} y+x^{2} y^{3}-\cos x=2 y \tag{5marks}
\end{equation*}
$$

QUESTION FIVE:

(a) Evaluate $\int_{2}{ }^{3} \frac{x^{3}-2 x^{2}-4 x-4}{x^{2}-x-2} d x$ correct to (4s.f) using partial fractions
(b) Evaluate $\int x^{2} \sin x d x$
(c) Evaluate $\int_{1}{ }^{3} \underline{2}$ dx using the toapezoiadal rule with rx 4 intervals correct to 3 decimal places
(d) Find the volume of the solid generated by rotating about the y-axis the area in the first quadrant enclosed by $y=x^{2}, y=1, y=4$ and the y-axis

