PAPER 1

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering & Technology

Department of Electrical & Electronics

UNIVERSITY EXAMINATION FOR:

Diploma in Electrical (Instrumentation and Control Engineering)

AMA 2151 MATHS II

END OF SEMESTER EXAMINATION

SERIES: December 2016

TIME: Two HOURS

tum

Instructions to Candidates

You should have the following for this examination Answer Booklet, examination pass and student ID, Scientific Calculator & No Mobile Phone. This paper consists of five questions. Attempt question one compulsory and any other two. Maximum marks for each part of a question are as shown. This paper consists of **THREE** printed pages

Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a)	(i)	Determine the derivative of $y = 3x^2 + 7x$ from first principles	(3 marks)		
	(ii)	Find the gradient at the point (x_1y) on the point (x_1y) on the curve $x^2+y^3 = 3axy$	(3 marks)		
	(iii)	Find the differential coefficient of $y = \tan x$	(4 marks)		
	(iv)	Evaluate $\int x^4 \cos 5x^5 dx$ using substitution method	(4 marks)		
b)	(i)	Given $Z = \frac{1}{\sqrt{x^2 + y^2}}$ Find $\frac{dz}{dy}$	(4 marks)		
	(ii)	Evaluate Sinh 1.275	(3 marks)		
c)	De (i) (ii)	termine $\int_{0}^{2} (x^{2} + 3x - 1) dx$ $\int \cos (5x + 2) dx$	(2 marks) (2 marks)		
d)	Fin the con	and the volume generated when plane figure bounded by $y = 5\cos 2x$, e x axis and ordinate at x=0 and $y = x/4$ rotates the x-axis through mplete revolution	(5 marks)		
QUESTION TWO:					
(a)	(i)	Find the co-ordinates of turning point of the curve $y = 2x^3 - 5x^2 + 12x - 7$			
		3	(5 marks)		
	(ii)	Distinguish whether its maximum or minimum	(3 marks)		
	(iii) Use Simpsons rule with $n = 10$ to approximate the intergral $\int_0^1 e^{x^2}$ and compare the result with midpoint rule with n=10	(12 marks)		
Q	UES	TION THREE:			
(a))	Evaluate $\int_{2}^{4} \frac{x^2 - 2x^2 - 3x - 2}{(x+2)(x-1)} dx$ using partial fractions	(7 marks)		
(b))	Find the equation of tangent and normal to the curve $y = x^3 - 2x^2 + 3x - 1$ at (2,5)	(5 marks)		

(c) Show that $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$ given $y = Ae^{2x} + Be^{-3x}$

(a) Find $\frac{dy}{dx}$ given y = 2Sinecose (3 marks)

QUESTION FOUR:

(a) Evaluate

$$\lim_{x \to 3} \frac{2x+3}{x-4}$$
 (3 marks)

(b) Given $y = 2xe^{-3x}$ show that $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$ (4 marks)

(c) Use quotient rule to find the gradient of $y = (x^2 + 4x + 1)$	
$(x^2 + 2x + 3)$	
at the point (1,1)	(3 marks)
tupa.	

(d) (i) The domain of the function (f(x) is
$$\{1,2,3,4,5\}$$
 find the range
if (f(x) = $5x^2 + 3$ (5 marks)

(ii) Differentiate the following implicitly

$$Siny + x^2y^3 - cosx = 2y$$
(5 marks)

QUESTION FIVE:

(a)	Evaluate $\int_{2^3} \frac{x^3 - 2x^2 - 4x - 4}{x^2 - x - 2} dx$ correct	
	to (4s.f) using partial fractions	(7 marks)
(b)	Evaluate ∫x ² sinx dx	(5 marks)
(c)	Evaluate $\int_{1}^{3} \underline{2} dx$ using the toapezoiadal rule with	
	rx	
	4 intervals correct to 3 decimal places	(4 marks)
(d)	Find the volume of the solid generated by rotating about the y-axis	
	the area in the first quadrant enclosed by	
	$y = x^2$, $y = 1$, $y = 4$ and the y-axis	(4 marks)