TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL ENGINEERING

AMA2150:ENGINEERING MATHEMATICS I

END OF SEMESTER EXAMINATION SERIES:DECEMBER2016

TIME:2HOURS
DATE:9Dec2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) A shed 4.0 m long and 2.0 m wide has a concrete path of constant width laid all way round. Taking the area of the path as $9.50 \mathrm{~m}^{2}$, calculate the width to the nearest centimeters
(10 marks)
(b) (i) Make b the subject of the formula $a=\frac{x-y}{\sqrt{b d+b e}}$
(ii) Simplify $\frac{\left(x^{2} y^{\frac{1}{2}}\right)\left(\sqrt{x} \sqrt[3]{y^{2}}\right.}{\left(x^{5} y^{3}\right)^{\frac{1}{2}}}$
(10 marks)
(c) Expand in ascending the powers of x as far as the term in x^{3} using binomial theorem
(10 marks)

Question TWO

(a) The height S meters of a mass thrown vertically upwards at a time t seconds is given by s $=40 t-13 t^{2}$. Determine the time taken by the mass on ascent and descent after being thrown to a height of 25 m
(10 arks)
(b) A vertical aerial stand on horizontal ground where a surveyor positioned due east of the aerial measures the elevation of the top as 48°. He then moves due south 30 m and measures the elevation as 44°. Determine the height of the aerial

(10 marks)

Question THREE

(a) Solve the following equations using completing the square method
i) $2 x^{2}-10 x-7=0$
ii) $2 x^{2}+10 x+8=0$

(10 marks)

(b) A new Piaggo tuktuk was tested for speed and the following speeds were recorded for the first six seconds $2.5,5.5,8.75,12.5,17.5,24 m / s$. Determine the distance travelled in the six seconds using
i) Mid-ordinate
ii) Trapezoidal
iii) Simpson rule
(10 marks)

Question FOUR

(a) Solve
i) $2 \sin ^{2} \theta=\sin \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
ii) $\tan \theta=2 \sin \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(b) Solve the area of a triangle ABC given that $B=128^{\circ}, A B=7.2 \mathrm{~cm}$ and $B C=4.5 \mathrm{~cm}$

Question FIVE

(a) Prove the following identities.
(i) $\frac{(\operatorname{cosec} \theta+\cot \theta) \tan \theta}{(\tan \theta+\sec \theta)}=\frac{\cos \theta+1}{\sin \theta+1}$

$$
\text { (ii) } 1+\cos \theta=2 \sin ^{2} \theta
$$

(b) The resonant frequency of a circuit containing Inductance and Capacitance is given by $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$. Given that the values of L and C are 2.6 and 0.8 percent large and small respectively, approximate the percentage errors in the frequency

