

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2150: ENGINEERING MATHEMATICS I

END OF SEMESTER EXAMINATION

SERIES:DECEMBER2016

TIME:2HOURS

DATE:9Dec2016

Instructions to Candidates

You should have the following for this examination *Answer Booklet, examination pass and student ID* This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) A shed 4.0 m long and 2.0 m wide has a concrete path of constant width laid all way round. Taking the area of the path as $9.50m^2$, calculate the width to the nearest centimeters

(10 marks)

- (b) (i) Make b the subject of the formula $a = \frac{x-y}{\sqrt{bd+be}}$
 - (ii) Simplify $\frac{(x^2y^{\frac{1}{2}})(\sqrt{x}\sqrt[3]{y^2}}{(x^5y^3)^{\frac{1}{2}}}$ (10 marks)
- (c) Expand in ascending the powers of x as far as the term in x³ using binomial theorem (10 marks)

Question TWO

©Technical University of Mombasa

(a) The height S meters of a mass thrown vertically upwards at a time t seconds is given by $s = 40t - 13t^2$. Determine the time taken by the mass on ascent and descent after being thrown to a height of 25 m

(10 arks)

(b) A vertical aerial stand on horizontal ground where a surveyor positioned due east of the aerial measures the elevation of the top as 48° . He then moves due south 30 m and measures the elevation as 44° . Determine the height of the aerial

(10 marks)

Question THREE

- (a) Solve the following equations using completing the square method
 - i) $2x^2 10x 7 = 0$ ii) $2x^2 + 10x + 8 = 0$ (10 marks)
- (b) A new Piaggo tuktuk was tested for speed and the following speeds were recorded for the first six seconds 2.5, 5.5, 8.75, 12.5, 17.5, 24m/s. Determine the distance travelled in the six seconds using

tum

- i) Mid-ordinate
- ii) Trapezoidal
- iii) Simpson rule

(10 marks)

Question FOUR

- (a) Solve
 - i) $2\sin^2\theta = \sin\theta$ for $0^o \le \theta \le 360^o$
 - ii) $\tan \theta = 2 \sin \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$

(10 marks)

(b) Solve the area of a triangle ABC given that $B = 128^{\circ}$, AB = 7.2cm and BC = 4.5cm

(10 marks)

Question FIVE

(a) Prove the following identities.

(i)
$$\frac{(cosec\theta + cot\theta)tan\theta}{(tan\theta + sec\theta)} = \frac{cos\theta + 1}{sin\theta + 1}$$

©Technical University of Mombasa

(ii) $1 + \cos\theta = 2\sin^2\theta$

(10 marks)

(b) The resonant frequency of a circuit containing Inductance and Capacitance is given by $f_r = \frac{1}{2\pi\sqrt{LC}}$. Given that the values of L and C are 2.6 and 0.8 percent large and small respectively, approximate the percentage errors in the frequency (10 marks)

tum