PAPER 2

TECHNICAL

UNIVERSITY OF

MOMBASA

Faculty of Engineering & Technology

Department of Electrical & Electronics

UNIVERSITY EXAMINATION FOR:

Certificate in Electrical and Electronic Engineering

AMA 1151 ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION

SERIES: December 2016

TIME: Two HOURS

Instructions to Candidates

You should have the following for this examination Answer Booklet, examination pass and student ID, Scientific Calculator & No Mobile Phone. This paper consists of five questions. Attempt Question One **COMPULSORY** and any other TWO questions. Maximum marks for each part of a question are as shown

Maximum marks for each part of a question are as shown. This paper consists of **THREE** printed pages

Do not write on the question paper.

QUESTION ONE (COMPULSORY)

(a)

Evaluate correct to 2 significant figure

	5sec 2 Co	$\frac{29^{0}10' - 3\cot 14^{0}21'}{0}$	(6 marks)	
(b)	Expr			
		$\frac{2x^2 + 6x - 35}{x^2 - x - 12}$	(6 marks)	
(c)	(i)	Solve the following trigonometric equation $Sin(x + 2) + Sin(x - 2\pi) = \frac{1}{2}$	(3 marks)	
	(ii)	The angle of elevation from a given point of the top of a tower which stands on horizontal ground is 22^{0} . From a point 120m nearer to the tower the angle of elevation is 44^{0} . Find the height of the tower	(5 marks)	
(a)	Expr	Express (-2, -3) in Polar Co-ordinates.		
(b) OUF	Find, $f(t) =$	(6 marks)		
QUL				
(a)	(i)	The roof of a shed is $3m$ long and slopes at 20° . What is the depth of the shed from back to front.	(3 marks)	
	(ii)	Prove that $(\underline{\text{Cosec}\Theta + \text{Cot}\Theta}) \tan \Theta = \underline{\text{Cos}\Theta + 1}$ $(\tan \Theta + \text{Sec} \Theta) \qquad $	(5 marks)	
(b)	Draw	y up a table of values from which you plot a graph of $y = tan A$	(4 marks)	
(c)	(i)	Prove that $\frac{1 + \tan^2 B}{1 + \cot^2 B} = \tan^2 B$	(5 marks)	
	(ii)	An alternating current I amperes at any time t seconds is given by I = 20 sin (100 π r + 0.2) the angle being in radians. Find the value of i when t = 0	(3 marks)	

QUESTION THREE:

(a)	Find the fourth roots of $3 - J4$		(6 marks)
(b)	With a (i) (ii)	iid of a diagram express 3 + j4 in polar form $(2 - j3) (4 + j3)$ in the form r< Θ	(4 marks) (4 marks)
(c)	(i)	Simplify $\frac{2-j3}{1+j2}$	(4 marks)
	(ii)	Determine (3+j4) (2-j5)	(2 marks)
QUES	TION	FOUR:	
(a)	(i)	Find from first principles $f'(x)$ when $f(x) = 3x$	(4 marks)
(b)	(i)	Obtain the differential coefficient of $x^2 + 2xy - 2y^2 + x = 2$	(3 marks)
	(ii)	Find the equations of the tangent and normal to the curve At the point (2, 5), $y = x^3 - 2x^2 - 3x - 1$	(6 marks)
(c)	Differe		
	(i)	$(3x + 2)^4$	(3 marks)
	(ii)	$\frac{2}{x^3}$	(2 marks)
	(iii)	Tan $(2x + 1)$	(2 marks)
QUES	TION	FIVE:	
(a)	Express the following in partial fractions		
	(i)	$\frac{10x + 37}{x^2 + 3x - 28}$	(4 marks)
	(ii)	$\frac{42x+44}{(6x+5)^2}$	(6 marks)
(b)	Find the greatest or least value of y on the curve $y = 4x - x$ (4 marks)		

(c) Find the turning values of y on the graph y = f(x) where $f(x) = 5 + 24x - 9x^2 - 2x^3$ (6 marks)