UNIVERSITY EXAMINATION FOR:

Certificate in Electrical and Electronic Engineering

AMA 1151 ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION
SERIES: December 2016
TIME: two HOURS

Instructions to Candidates

You should have the following for this examination
Answer Booklet, examination pass and student ID, Scientific Calculator \& No Mobile Phone.
This paper consists of five questions. Attempt Question One COMPULSORY and any other TWO questions.
Maximum marks for each part of a question are as shown.
This paper consists of THREE printed pages
Do not write on the question paper.

QUESTION ONE (COMPULSORY)

(a) Evaluate correct to 2 significant figure
$5 \sec 29^{0} 10^{\prime}-3 \cot 14^{0} 21^{\prime}$
$2 \operatorname{Cosec} 64^{\circ} 8^{\prime} \tan 23^{\circ} 17^{\prime} \quad$ (6 marks)
(b) Express the following in partial fractions

$$
\frac{2 x^{2}+6 x-35}{x^{2}-x-12}
$$

(c) (i) Solve the following trigonometric equation

$$
\operatorname{Sin}(x+2)+\operatorname{Sin}(x-2 \pi)=1 / 2
$$

(ii) The angle of elevation from a given point of the top of a tower which stands on horizontal ground is 22°.
From a point 120 m nearer to the tower the angle of elevation is 44^{0}. Find the height of the tower
(a) Express ($-2,-3$) in Polar Co-ordinates.
(b) Find, from first principles, the derivative of the function $f(t)=k t^{4}$ where k is a constant.

QUESTION TWO:

(a) (i) The roof of a shed is 3 m long and slopes at 20°. What is the depth of the shed from back to front.
(ii) Prove that $(\underline{\operatorname{Cosec} \Theta+\operatorname{Cot} \Theta) \tan \Theta}=\underline{\operatorname{Cos} \Theta+1}$

$$
\begin{equation*}
(\tan \theta+\operatorname{Sec} \theta \quad \operatorname{Sin} \theta+1 \tag{5marks}
\end{equation*}
$$

(b) Draw up a table of values from which you plot a graph of $y=\tan A$
(c) (i) Prove that $\frac{1+\tan ^{2} \mathrm{~B}}{1+\operatorname{Cot}^{2} \mathrm{~B}}=\tan ^{2} \mathrm{~B}$
(ii) An alternating current I amperes at any time t seconds is given by $\mathrm{I}=20 \sin (100 \pi \mathrm{r}+0.2)$ the angle being in radians. Find the value of i when $\mathrm{t}=0$

QUESTION THREE:

(a) Find the fourth roots of $3-\mathrm{J} 4$
(b) With aid of a diagram express
(i) $3+\mathrm{j} 4$ in polar form
(ii) $(2-\mathrm{j} 3)(4+\mathrm{j} 3)$ in the form $\mathrm{r}<\theta$
(c) (i) \quad Simplify $\frac{2-\mathrm{j} 3}{1+\mathrm{j} 2}$
(ii) Determine $(3+\mathrm{j} 4)(2-\mathrm{j} 5)$

QUESTION FOUR:

(a) (i) Find from first principles $\mathrm{f}^{\prime}(\mathrm{x})$ when $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$
(b) (i) Obtain the differential coefficient of $x^{2}+2 x y-2 y^{2}+x=2$
(ii) Find the equations of the tangent and normal to the curve At the point $(2,5), y=x^{3}-2 x^{2}-3 x-1$
(c) Differentiate the following
(i) $\quad(3 x+2)^{4}$
(ii) $\frac{2^{3}}{\mathrm{x}^{3}}$
(iii) $\operatorname{Tan}(2 \mathrm{x}+1)$

QUESTION FIVE:

(a) Express the following in partial fractions
(i) $\frac{10 x+37}{x^{2}+3 x-28}$
(4 marks)
(ii) $\frac{42 x+44}{(6 x+5)^{2}}$
(6 marks)
(b) Find the greatest or least value of y on the curve $y=4 x-x$
(c) Find the turning values of y on the graph $y=f(x)$ where $f(x)=5+24 x-9 x^{2}-2 x^{3}$

