

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering & Technology

Department of Mathematics & Physics

UNIVERSITY EXAMINATION FOR:

Certificate in Electrical and Electronic Engineering

AMA 1151 ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION

SERIES: July 2017

TIME: Two HOURS

Instructions to Candidates

You should have the following for this examination

Answer Booklet, examination pass and student ID, Scientific Calculator & No Mobile Phone. This paper consists of five questions. Attempt Question One **COMPULSORY** and any other TWO questions.

Maximum marks for each part of a question are as shown. This paper consists of **THREE** printed pages

Do not write on the question paper.

QUESTION ONE (Compulsory)

a) Using special triangles and without using calculator, write down the values of :-

i)	Sin 30 ⁰	(2Mks)
ii)	$\cos 30^{\circ}$	(2Mks)
iii)	Tan 45 ⁰	(2Mks)

- b) (i) Solve the equation $1 + \cos \theta = 2\sin^2 \theta$ for values of between 0 and 36^0 . (6Mks)
 - (ii) Calculate the area of triangle ABC givenType equation here. <ACB = 49^o.(3Mks)
- c) Express $(6, 120^{\circ})$ in contesion co-ordinates

(3Mks)

d) Express $2x^2 + 6x - 35$ in partial fractions	(5Mks)		
$x^2 - x - 12$			
e) Find the derivative of $Y=3x^2 + 7x$ from first principles.	(7Mks)		
QUESTION TWO			
a) (i) Eliminate θ from the equations $x = a \sin \theta$, $y=btan \theta$	(3Mks)		
ii) Prove that $Sin3A = 3SinA - 4Sin3A$	(5Mks)		
 b) Draw up a table of values from which you plot a graph of Y = Sir c) Solve triangle JKL, given <j 123<sup="" =="">017,</j> 			
JK = 72mm and $JL = 43mm$	(7Mks)		
QUESTION THREE			
a) (i) Express $2 + j3$ in form $p + jy$			
1 + j	(4Mks)		
i) Given $IzI = 10$ and arg. $z = 120^{\circ}$. Write down Z	(3Mks)		
b) Express the complex number -4-j3 in polar form	(5Mks)		
c) i) Find the modulus and argument of			
$\frac{1}{12 + j5}$ if $12+J5 = r(\cos \theta - j\sin \theta)$	(6Mks)		
ii) Let $Z = 4+j2$ and $w = 7-j3$. Find $Z+W$	(2Mks)		

QUENSTION FOUR

a) Express the following in partial fractions

i)
$$\frac{x+7}{x^2+7x+10}$$
 (5Mks)
ii) $\frac{42x+44}{(6x+5)^2}$ (5Mks)

b) Find the three cube roots of 5-j3 in the form a+jb (giving the values of a and b to three decimal places), and represent them on an Argand diagram.

(10Mks)

QUESTION FIVE

- a) i) Find the turning values of y on the graph y=f(x) where $f(x) = 5+24x-9x^2-2x^3$ and distinguish between them. (6Mks)
- b) Differentiate the expression Y=(x²-3) (x+1)² and simplify the results (4Mks)
 c) Differentiate the following:

 i) 2Sin 4x - 3cos4x
 (3Mks)
 - ii) $2\cos\frac{1}{3}\prod^{X}$ (3Mks)
 - iii) Sin (3x-2)³ (4Mks)