TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering \& Technology
 Department of Mathematics \& Physics
 UNIVERSITY EXAMINATION FOR:
 Certificate in Electrical and Electronic Engineering
 AMA 1151 ENGINEERING MATHEMATICS II
 END OF SEMESTER EXAMINATION SERIES: July 2017
 TIME: two HOURS

Instructions to Candidates

You should have the following for this examination
Answer Booklet, examination pass and student ID, Scientific Calculator \& No Mobile Phone.
This paper consists of five questions. Attempt Question One COMPULSORY and any other TWO
questions.
Maximum marks for each part of a question are as shown.
This paper consists of THREE printed pages
Do not write on the question paper.

QUESTION ONE (Compulsory)

a) Using special triangles and without using calculator, write down the values of :-
i) $\quad \operatorname{Sin} 30^{\circ}$
ii) $\quad \operatorname{Cos} 30^{\circ}$
iii) $\operatorname{Tan} 45^{0}$
b) (i) Solve the equation $1+\operatorname{Cos} \theta=2 \operatorname{Sin}^{2} \theta$ for values of between 0 and 36°. (6 Mks)
(ii) Calculate the area of triangle ABC givenType equation here. $\angle \mathrm{ACB}=49^{\circ}$. (3Mks)
c) Express $\left(6,120^{\circ}\right)$ in contesion co-ordinates
d) Express $\frac{2 \mathrm{x}^{2}+6 \mathrm{x}-35}{\mathrm{x}^{2}-\mathrm{x}-12}$ in partial fractions
e) Find the derivative of $Y=3 x^{2}+7 x$ from first principles.

QUESTION TWO

a) (i) Eliminate θ from the equations $\mathrm{x}=\mathrm{a} \operatorname{Sin} \theta, \mathrm{y}=\mathrm{b} \tan \theta$
(3Mks)
ii) Prove that $\operatorname{Sin} 3 A=3 \operatorname{Sin} A-4 \operatorname{Sin} 3 A$ (5Mks)
b) Draw up a table of values from which you plot a graph of $\mathrm{Y}=\operatorname{Sin} \emptyset$ (5 Mks)
c) Solve triangle JKL, given $<\mathrm{j}=123^{\circ} 17$,

$$
\begin{equation*}
\mathrm{JK}=72 \mathrm{~mm} \text { and } \mathrm{JL}=43 \mathrm{~mm} \tag{7Mks}
\end{equation*}
$$

QUESTION THREE

a) (i) Express $\underline{2+j} \mathbf{3}$ in form $\mathrm{p}+\mathrm{jy}$

$$
\begin{equation*}
1+\mathrm{j} \tag{4Mks}
\end{equation*}
$$

i) Given $\mathrm{IzI}=10$ and $\arg . \mathrm{z}=120^{\circ}$. Write down Z
b) Express the complex number -4- j 3 in polar form
c) i) Find the modulus and argument of

$$
\frac{1}{12+\mathrm{j} 5} \text { if } 12+\mathrm{J} 5=\mathrm{r}(\cos \theta-\mathrm{j} \operatorname{Sin} \theta)
$$

(6Mks)
ii) Let $Z=4+j 2$ and $w=7-j 3$. Find $Z+W$

QUENSTION FOUR

a) Express the following in partial fractions
i) $\frac{x+7}{x^{2}+7 x+10}$
ii) $\frac{42 x+44}{(6 x+5)^{2}}$
b) Find the three cube roots of $5-\mathrm{j} 3$ in the form $\mathrm{a}+\mathrm{j} \mathrm{b}$ (giving the values of a and b to three decimal places), and represent them on an Argand diagram.
(10Mks)

QUESTION FIVE

a) i) Find the turning values of y on the graph $y=f(x)$ where $f(x)=5+24 x-9 x^{2}-2 x^{3}$ and distinguish between them.
b) Differentiate the expression
$\mathrm{Y}=\left(\mathrm{x}^{2}-3\right)(\mathrm{x}+1)^{2}$ and simplify the results
(4Mks)
c) Differentiate the following:
i) $\quad 2 \operatorname{Sin} 4 x-3 \cos 4 x$
ii) $\quad 2 \operatorname{Cos} \frac{1}{3} \Pi^{X}$
iii) $\quad \operatorname{Sin}(3 x-2)^{3}$

