TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN BUILDING AND CIVIL ENGINEERING
 INSTITUTION BASED EXAMINATION
 EBC 2202: THEORY OF STRUCTURES I

SERIES: MARCH 2017
TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Pocket calculator
This paper consists of FIVE questions. Attempt any THREE questions
Do not write on the question paper
Mobile Phones are NOT allowed inside the examination room

QUESTION ONE
(a) (i) Define a strut.
(ii) Outline three assumptions in the Euler's column theory.
(b) A hollow alloy tube 4 m long with external and internal diameter of 50 and 25 mm respectively was found to extend 2.5 mm under a tensile load of 75 KN . Find the buckling load for the tube with both ends pinned. Also find the safe load on the tube, taking the factor of safety as 3 .
(10 marks)
(c) A copper wire of 2 mm diameter is required to be wound around a drum. Find the minimum radius of the drum if the stress in the wire is not to exceed 80 Mpa . Take modulus of elasticity for the copper as 100Gpa.
(6 marks)

QUESTION TWO

(a) A steel rod 10 m long and of 50 mm diameter is used as a column, with one end fixed and the other free. Determine the crippling load by Euler's formula. Take E as 200 Gpa.
(5 marks)
(b) A hollow rectangular masonry pier is $1.2 \mathrm{~m} \times 0.8 \mathrm{~m}$ wide and 150 mm thick. A vertical load of 2 MN is transmitted in the vertical plane bisecting 1.2 m wide and at an eccentricity of 100 mm from the geometric axis of the section. Calculate the maximum and minimum stress intensities in the section.
(15 marks)

QUESTION THREE

(a) For columns with both ends hinged, show that the critical load ' P ' is given by the formula

$$
\begin{equation*}
\mathbf{P}=\frac{\Pi^{2} \mathbf{E I}}{\mathrm{~L}^{2}} \tag{15marks}
\end{equation*}
$$

(b) A metallic rod of 10 mm diameter is bent into a circular form of radius 6 m . If the maximum bending stress developed in the rod is 125 Mpa , find the value of Young's modulus for the rod material.

QUESTION FOUR

A T-section $150 \mathrm{mmx} 120 \mathrm{~mm} \times 20 \mathrm{~mm}$ is used as a strut of 4 m long with hinges at its both ends. Calculate the crippling load, if Young's modulus for the material is to be 200 Gpa .
(20 marks)

QUESTION FIVE

(a) Find the Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm thick. Take length of the column as 2.3 m and hinged at its both ends. Take $\mathrm{E}=205 \mathrm{Gpa}$.Also determine crippling load by Rankine's formula using constants as 335 Mpa and $\frac{1}{7500}$.
(b) An I-section joist 400 mmx 200 mmx 20 mm and 6 m long is used as a strut with both ends fixed. What is Euler's crippling load for the column? Take Young's modulus for the joist as 200Gpa.
(10 marks)

