

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: DIPLOMA IN BUILDING AND CIVIL ENGINEERING

EBC 2105 :ENGINEERING SURVEY II

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2 HOURS
DATE: 22 Dec 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Drawing instruments.
This paper consists of five questions.
Attempt any THREE questions.
Do not write on the question paper.

Question One

a) The coordinates of a point A are $311.617 \mathrm{mE}, 447.245 \mathrm{mN}$. Calculate the coordinates of
i. Point B where $\theta_{A B}=37^{\circ} 11^{\prime} 20^{\prime \prime}$ and $D_{A B}=57.916 M$
ii. Point C where $\theta_{A C}=205^{\circ} 33^{\prime} 55^{\prime \prime}$ and $D_{A C}=85.071 M$
(8 marks)
b) In an exercise to determine distances between two points A and B a tacheometer was set up at P and the following observations recorded.

Staff at	Vertical	Staff Reading		
		upper	middle	lower
A	$+5^{\circ} 12^{\prime}$	1.388	0.978	0.610
B	$-27^{\circ} 35$	1.604	1.286	0.997

Given the height of the instrument was 1.50 m , the reduced levels of point $\mathrm{P}=315.600 \mathrm{~m}$ and the constants k and c are 100.00and 0.00 m respectively. Determine the reduced levels of point A and B.
(12 marks)

Question Two

a) Define the following types of curves
i. Simple curve
ii. Transition curve
iii. Compound circular curve
iv. Reverse circular curve
(6 marks)
b) Derive the setting out data for a curved line if the radius of the curve is 12 m , the angle of intersection is 90° and offsets are required at 2 m intervals.
(14 marks)

Question Three

a) With the aid of a well labelled sketch, derive a relation that can be used to compute area of an irregularly shaped surface by the trapezoidal method
(7 marks)
b) The coordinates below were obtained from a survey activity

Station	Eastings (m)	Northings (m)
E	300.00	412.78
F	206.98	567.84
G	468.55	245.12
H	392.93	324.98
I	291.74	198.45

Determine the area enclosed by the coordinates. Give your answer in hectares
(7 marks)
c) In chain surveying the following offsets were taken to a fence from a chain line. Compute the area bounded by the chain line and the offsets.
(6 marks)

Chainage (m)	130	150	170	190	210	230	250	270	290	310
Offset (m)	0	6.45	10.46	9.38	11.94	14.86	10.12	5.01	2.79	1.09

Question Four

a) Define the following terms as used in mass haul diagrams
i. Haul
ii. Shrinkage
iii. Borrow
iv. Waste
v. Free haul distance
vi. Limit of economic haul (6 marks)
b) Briefly discuss the procedure used in the construction of a mass haul diagrams ($\mathbf{8}$ marks)
c) Discuss the uses of mass haul diagrams in civil engineering works

Question Five

a) Discuss the following
i. Open traverse
ii. Closed traverse
(4 marks)
b) State the points to be considered when selecting a traverse station.
c) Discuss the common errors in traversing
d) Discuss the four types of plans that will be required during the process of setting out

