

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING & CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR: DIPLOMA IN BUILDING AND CIVIL ENGINEERING

EBC 2102: ENGINEERING SURVEY II

SPECIAL SUPPLEMENTARY EXAMINATION

SERIES: AUGUST 2017

TIME: 2 HOURS

DATE: 22 Sep 2017

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

-Drawing instruments.

This paper consists of five questions.

Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question One

- a) Discuss the following
 - i. Open traverse

ii. Closed traverse (4 marks)

b) State the points to be considered when selecting a traverse station. (4 marks)

c) Discuss the three stages involved in setting out in civil engineering works (12 marks)

Question Two

a) The coordinates of a point A are 311.617mE, 447.245mN. Calculate the coordinates of

i. Point B where $\theta_{AB} = 37^{\circ}11'20''$ and $D_{AB} = 57.916M$

ii. Point C where $\theta_{AC} = 205^{\circ}33'55''$ and $D_{AC} = 85.071M$ (8 marks)

b) In an exercise to determine distances between two points A and B a tacheometer was set up at P and the following observations recorded.

Staff at	Vertical	Staff Reading					
	Angle	upper	middle	lower			
A	+5°12'	1.388	0.978	0.610			
В	-27°35'	1.604	1.286	0.997			

Given the height of the instrument was 1.50m, the reduced levels of point P=315.600m and the constants k and c are 100.00and 0.00m respectively. Determine the reduced levels of point A and B. (12 marks)

Question Three

- a) With the aid of a well labelled sketch, derive a relation that can be used to compute area of an irregularly shaped surface by the trapezoidal method (7 marks)
- b) The coordinates below were obtained from a survey activity

Station	Eastings(m)	Northings(m)			
Е	300.00	412.78			
F	206.98	567.84			
G	468.55	245.12			
Н	392.93	324.98			
I	291.74	198.45			

Determine the area enclosed by the coordinates. Give your answer in hectares (7 marks)

c) In chain surveying the following offsets were taken to a fence from a chain line. Compute the area bounded by the chain line and the offsets. (6 marks)

Chainage (m)	130	150	170	190	210	230	250	270	290	310
Offset (m)	0	6.45	10.46	9.38	11.94	14.86	10.12	5.01	2.79	1.09

Question Four

- a) Define the following terms as used in mass haul diagrams
 - i. Haul
 - ii. Shrinkage
 - iii. Borrow
 - iv. Waste
 - v. Free haul distance
 - vi. Limit of economic haul (6 marks)
- b) Briefly discuss the procedure used in the construction of a mass haul diagrams (8 marks)
- c) Discuss the uses of mass haul diagrams in civil engineering works

(6 marks)

Question Five

- a) Define the following types of curves
 - i. Simple curve
 - ii. Transition curve
 - iii. Compound circular curve
 - iv. Reverse circular curve

(6 marks)

b) Derive the setting out data for a curved line if the radius of the curve is12m, the angle of intersection is 90° and offsets are required at 2m intervals. (14 marks)