TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

(BSME) Y5-S2

EMG 2523: MECHANICS OF METAL CUTTING

END OF SEMESTER EXAMINATIONS

SERIES: MAY 2016

TIME: 2 HOURS

INSTRUCTIONS:

- ❖ You should have; Answer booklet,; Drawing instruments and Scientific calculator
- ❖ This paper consists of FIVE questions
- ❖ Attempt any THREE questions.

This paper consists of THREE printed pages

QUESTION 1

- a) (i) State THREE indicators of tool failure (1.5 marks)
 - (ii) State FOUR characteristics of orthogonal as opposed to oblique cutting (2 marks)
 - (iii) Working from first principles, establish Merchant's shear angle expression (3 marks)
- b) In an orthogonal cutting experiment:

Chip thickness after cutting	= 2.0mm
Coefficient of friction	=0.9
Width of cut	= 10mm
Feed	= 1.25mm/rev
Rake angle	= 10°
Shear strength	$\dots = 6000 \text{kg/cm}^2$
Cutting speed	= 30m/min

Determine, by way of Merchant's theory:

- i) The shear plane angle Ø
- ii) The friction angle
- iii) The cutting force
- iv) H.P of motor of mechanical $\eta = 0.95$ (13.5 marks)

QUESTION 2

- *a)* Working from first principles, establish the optimum cutting speed V_T where the total cost of machining a batch is a minimum. (12 marks)
- b) (i) In a certain machining operation on a component, n = 0.25, C = 150, tool change time = 8 minutes, tool regrind time = 5 minutes, machine running cost =£2.00 per hour, depreciation of tool per regrind = £0.125. Calculate the optimum cutting speed. (3 marks)
 - (ii) If 1000 components are required with a machine length of 100mm at 65mm diameter using a feed of 0.2mm/rev, calculate the time required to machine the batch of 1000, and the total cost Y_T (5 marks)

QUESTION3

- a) With the aid of sketches, describe the circumstances that favour the formation of the following types of chips:
 - (i) Discontinuos chip
 - (ii) Continuous chip
 - (iii) Continuous chip with chip welding (6 marks)
 - (b) Discuss briefly the following cutting fluids:
 - (i) Solid lubricants
 - (ii) Emulsions
 - (iii) Chemical solutions
 - (iv) Straight fatty oils
 - (v) Aqueous solutions (10 marks)
 - (c) The power to cut a material under certain conditions is 2.6 W/mm³/s. A cut 5.2 mm deep x 0.22mm/rev feed is taken at a cutting speed of 18 m.p.m and the work cooled by a flow of 3.5 litres of coolant per minute, specific heat capacity 3.6 kJ/kg °C, which conducts away 82% of the heat. The specific gravity of the coolant is 0.92. Determine the rise in temperature of the coolant due to this cut. (4 marks).

QUESTION4

- a) Discuss vibration and chatter on machine tools (3 marks)
- b) In a machining operation the cutting force F_C is related to the depth of cut (d) and feed (f) by the expression:

 $F_C = 1958 d^{0.88} f^{0.65}$

- A lathe, under such conditions, consumes 5.5kW on a workpiece of diameter 125mm, depth of cut 4.5mm and feed 0.2mm/rev. Determine the maximum spindle speed (R.P.M)(6 marks).
- c) In an orthogonal cutting process, the cutting velocity was 13m/minute and the forces normal to the shear plane (F_{NS}) are 1400N. If the rake angle was 10°, chip thickness ratio 0.35 and the coefficient of friction was 1.2, determine the motor horsepower if the efficiency is 0.9 (6 marks)
- d) An end mill cutter of diameter 120mm is to face mill a workpiece 100mm wide. The optimum power available is 4 kW, depth of cut is 3mm, cutting speed is 22m/minute and the cutter has

16teeth. If the material removal rate (K) is 25,000mm³/(min.kW), determine the feed rate per tooth. (5 marks)

QUESTION5

- a) With the aid of a sketch, describe the principle of the cutting tool dynamometer (7 marks)
- b) In an orthogonal cutting experiment the cutting force was 201N, feed force 120N, rake angle 28° and chip thickness ratio $\frac{2}{5}$. If the cutting speed was 25 m.p.m, determine the friction work at the tool rake face. (6 marks)
- c) Define the following terms:
 - i) waviness
 - ii) roughness
 - iii) Errors of form (3 marks)
- d) Fig 1 shows the area trace in a roughness test with the attendant magnification. Calculate R_a value for the surface in micrometers. (4 marks)

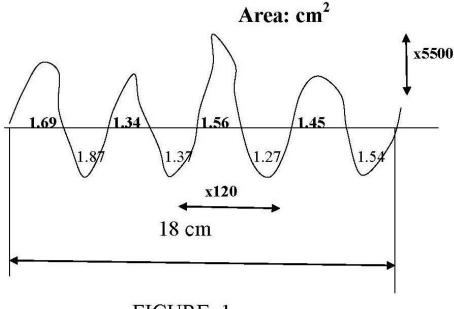


FIGURE 1