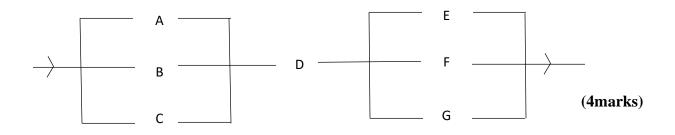
## FACULTY OF APPLIED AND HEALTH SCIENCES

### **DEPARTMENT OF MATHEMATICS AND PHYSICS**

# DIPLOMA IN INFORMATION COMMUNICATION AND TECHNOLOGY AMA 2110 MATHEMATICS END OF SEMESTER EXAMINATION SERIES DECEMBER 2016 TIME 2 HOURS

**INSTRUCTIONS TO CANDIDATES** 


This paper consists of five questions

Answer question one (compulsory) and any other two questions

| Q1.                       |                                                          |          |
|---------------------------|----------------------------------------------------------|----------|
| a) Given A=               | = {a, b, c, d} and B= {a, c, d, e, f}                    |          |
| Find:                     | i) A U B                                                 | (2marks) |
|                           | ii) $\mathbf{A} \cap \mathbf{B}$                         | (2marks) |
|                           | iii) A – B                                               | (2marks) |
|                           | iv) A $\triangle$ B                                      | (2marks) |
| b) Given f(x              | $f(x) = 3x^2 + 5$ and $g(x) = 5x + 8$                    |          |
| Find:                     | i) f(5)                                                  | (1mark)  |
|                           | ii) f(-7)                                                | (1mark)  |
|                           | iii) fg(7)                                               | (3marks) |
|                           | iv) g <sup>-1</sup> (x)                                  | (2marks) |
|                           | v) f <sup>-1</sup> (5)                                   | (1mark   |
| c) Define:                | i) A function                                            | (1mark   |
|                           | ii) Codomain                                             | (1mar    |
|                           | iii) Domain                                              | (1mar    |
| d) find A <sup>-1</sup> g | given $A = \begin{pmatrix} 7 & 5 \\ 3 & 1 \end{pmatrix}$ | (2mark   |
| e) Convert 2              | 247 <sub>ten</sub> into binary                           | (2marl   |
| f) Add                    | 110012                                                   |          |
|                           | + 1111 <sub>2</sub>                                      | (2marl   |
| g) Multiply               | 110011 <sub>2</sub> x 111                                | (3mark   |

| Q2. (a) Given A = $\begin{pmatrix} 3 & 4 & 1 \\ 2 & 1 & 5 \\ 3 & 4 & 5 \end{pmatrix}$ and B= | $ \left(\begin{array}{c} 1111\\ 102\\ 372 \end{array}\right) $ |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <b>Find:</b> (i) <b>A</b> + <b>B</b>                                                         | (3marks)                                                       |
| (ii) 2A – 3B                                                                                 | (3marks)                                                       |
| (b) Given A = ( 1,2,3,4,5) and B = ( 1,3,5,7,8                                               | 3)                                                             |
| Find (i) A U B                                                                               | (2marks)                                                       |
| (ii) $\mathbf{A} \cap \mathbf{B}$                                                            | (2marks)                                                       |
| (iii) <b>A</b> – <b>B</b>                                                                    | (2marks)                                                       |
| (iv)Write down all the subjects of B                                                         | where                                                          |
| each element is greater than 3                                                               | (4marks)                                                       |

## (c) Write down the Boolean function for the circuit



a) Write down de Morgan's Laws of sets in Boolean Algebra (4marks)b) Convert to base two given

### c) Evaluate

| i) 6 X 4       | -2(4+7)                      | (2marks) |
|----------------|------------------------------|----------|
| ii) <u>x</u> - | $\underline{\mathbf{x}+4}=2$ |          |
| 2              | 3                            | (3marks) |

#### (d) Find the determinant, using Cramer's rule given

|    | 1 2 -3 |          |
|----|--------|----------|
| A= | 3 5 2  |          |
|    | 2 3 -1 | (4marks) |

#### Q4. (a) Solve by quadratic formula

$$3x^2 + 8x + 4 = 0$$
 (4marks)

### (b) Given 55,61,57,60,57,60,58,61,59

Determine the median and quartile value of the set (6marks)

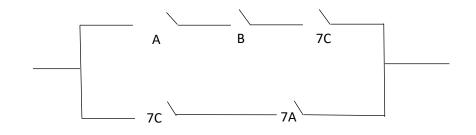
(c) Find the mean and medial class for the data (6marks)

| Class     | 0-9 | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 |
|-----------|-----|-------|-------|-------|-------|-------|
| Frequency | 1   | 3     | 8     | 12    | 9     | 2     |

Q3

Q5. (a) Write down the truth table for the proposition A and 7A

(b) Complete the table below


| Α | В | A and B |
|---|---|---------|
| Т | Т |         |
| F | Т |         |
| Т | F |         |
| F | F |         |

(c) Prove using venn diagrams

$$\mathbf{A} \mathbf{U} \mathbf{B} = \overline{\mathbf{A}} \cap \overline{\mathbf{B}}$$

(5marks)

# (d) Write down the condition for the flow of current through



(5marks)

(5marks)