

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Mechanical & Automotive Engineering UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATION FOR: BSc. Mechanical Engineering EMG 2504 : COMPUTER AIDED DRAWING AND MANUFACTURING SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: AUGUST2017 TIME: 2 HOURS DATE: Pick DateAug2017

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of **FIVE** questions.

Question ONE is COMPULSORY

Attempt any other **TWO** questions.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Mobile phones are not allowed in the examination room.

Question ONE (COMPULSORY: 30 Marks)

a.	Define the terms CAD, CAM and describe the relationship between	CAD and
	CAM giving rise to CAD/CAM.	(6 marks)

- b. Discuss the following terms in relation with computer systems.
 - i. Application Software
 - ii. Operating system (4 marks)
- c. With the aid of sketches describe the working principle of an LCD Screen display. (4 marks)
- d. A point P (1, 0, 0) is translated by a vector [3 4 5]^T. Then it is rotated 30° about the z-axis, followed by a rotation of 45° about the x-axis. What are the new coordinates of the point? (6 marks)

e.	Describe briefly the purpose of tool compensation and state the TWO types of				
	compensat	tion used on machining centers.	(6 marks)		
f.	Explain the meaning of the following inline keywords:				
	i.	N5 G92 X-1.000 Y1.000 Z1.000			
	ii.	N125 G03 X1.000 Y-1.250 R.250	(4 marks)		
Question TWO (20 Marks)					
a)	List FOUR	(4) Finite Element Analysis (FEA) applications	(4 Marks)		
b)	With the aid of sketches, list and explain the THREE (3) different types of finite				
	elements		(6 Marks)		
c)	Briefly explain (with sketches) the steps carried out in solving a physical problem		physical problem		
	using FEA	software.	(6 Marks)		
d)) List FOUR (4) advantages of carrying out FEA analysis at the design stage		sign stage		
			(4 Marks)		

Question THREE (20 Marks)

(6 Marks)		
ustrate with sketches the following common assembly constraints:		
(2 Marks)		
(2 Marks)		
(6 Marks)		
nction and		
gainst the		
(4 Marks)		

Question FOUR (20 Marks)

- a) What do you understand by the terminology "Computer Numerical Control (CNC)"? (3 Marks)
- b) State and briefly describe the following control systems used in a computer numerical machine:
 - i) Open Loop System
 - ii) Close Loop System

Which of these systems do most of the modern CNC machines use? (6 Marks)

c) State and briefly describe the six (6) major elements of a CNC system.

(12 Marks)

Question FIVE (20 Marks)

- **a.** State and briefly describe the procedures (steps) to be followed in Computer Numerical Control (CNC) programming and machining. (10 marks)
- **b.** Figure 5 shows a part that is to be machined from a $100 \times 80 \times 40$ mm billet. A three axis CNC is to be used for the process. Write a part program that can be used to effectively machine the part. The cutting parameters are given below: (10 marks)

	Milling	Drilling			
Cutter	Ø20mm flat end mill	Ø16mm drill bit			
Spindle speed (rpm)	3000	500			
Feed (mm/min)	500	240			

Table 1: Cutting parameters

Figure 5