TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR:
 THE DEGREE IN BACHELOR OF SCINCE IN MECHANICAL ENGINEERING EMG 2416: GAS DYNAMICS AND BOUNDARY LAYER THEORY END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2016

time: 2 hours
DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question One

a) Explain the following terms
i. Turbulent boundary layer
ii. Laminar sub-layer
b) Describe fine the following boundary layer
i. Boundary layer thickness
ii. Displacement thickness
iii. Energy thickness
c) In the boundary layer over the face of a high spillway ,the velocity distribution was observed to have the following form:

$$
\frac{u}{U}=\left[\frac{y}{\delta}\right]^{0.22}
$$

The free stream velocity U at a certain section was observed to be $30 \mathrm{~m} / \mathrm{s}$ and the boundary layer thickness of 60 mm was estimated from the velocity distribution measured at the section. The discharge passing over the spillway was $6 \mathrm{~m} / \mathrm{s}$ per metre length of spillway. Calculate
i. The displacement thickness
ii. The energy thickness
iii. The loss of energy up to the section under consideration.

Question Two

a) Define the following Terms.
i. Drag force
ii. Lift force
iii. Streamlined body
iv. Bluff body
b) Calculate the diameter of a parachute to be used for dropping an object of mass 100 kg so that maximum terminal velocity of dropping is $5 \mathrm{~m} / \mathrm{s}$. The drag co-efficient for parachute which may be treated as hemispherical is 1.3 .The density of air is $1.216 \mathrm{~kg} / \mathrm{m}^{3}$
c) A flat plate 1.5 mx 1.5 m moves at $50 \mathrm{~km} / \mathrm{h}$ in stationery air of density $1.15 \mathrm{~kg} \backslash \mathrm{~m} 3$.If the co-efficients of .drag and lift are 0.15 and 0.75 respectively Determine
i. Drag force
ii. Lift force
iii. Resultant force
iv. Power required to keep the plate in motion

Question Three

a) Explain the following term related to airfoil
i. Chold line
ii. Profile centreline
iii. Angle of attack
iv. Camber
v. Aspect Ratio
b) Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} / \mathrm{h}$ on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m} 3$. The coefficient of lift and drag are 0.75 and 0.15 respectively. Calculate
i. The lift force
ii. The drag force.
iii. The resultant force
iv. Direction of resultant force.
v. Power exerted by the air on the plate.
(10 marks)
c) A spherical steel ball of diameter 40 mm and of density $8500 \mathrm{~kg} / \mathrm{m} 3$ is dropped in large mass of water. The co-efficient of drag of the ball in water is given as 0.45 . Find
i. The terminal velocity of the ball in water. If the ball is dropped in air.
ii. The increase in terminal velocity of ball.
(Take the density of air $=1.25 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{C}_{\mathrm{D}}=0.1$)
(5 marks)

Question four

a) Define the following terms of flow which depend on Mach number:
i. Subsonic flow
ii. Sonic flow
iii. Zone of Action
iv. Zone of silence
(6 marks)
b) A gas is flowing through a horizontal pipe at a temperature of $4^{\circ} \mathrm{C}$. The diameter of the pipe is 8 cm and at a section 1-1 in this pipe, the pressure is $30,3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). The diameter of the pipe changes from 8 cm to 4 cm at the section 2-2, where pressure is $20.3 \mathrm{~N} / \mathrm{cm} 2$ (gauge). Find the velocities of the gas at these sections assuming an isothermal process .Take $\mathrm{R}=287.14 \mathrm{Nm} / \mathrm{kg} \mathrm{K}$, and atmospheric pressure $=$ $10 \mathrm{~N} / \mathrm{cm}^{2}$
(8 marks)
c) Find the sonic velocity for the following fluids
i. Crude oil of sp gravity 0.8 and bulk modulus $153036 \mathrm{~N} / \mathrm{cm} 2$
ii. Mercury having a bulk modulus of $2648700 \mathrm{~N} / \mathrm{cm} 2$
(6marks)

Question five

a) What is turbulence?
(2 marks)
b) Describe the following types turbulent motions
i. Wall turbulence.
ii. Free turbulence.
iii. Convective turbulence.
(3 marks)
c) In a pipe of 360 mm diameter having turbulent flow, the centre -line velocity is $7 \mathrm{~m} / \mathrm{s}$ and that at 60 mm from the pipe wall is $6 \mathrm{~m} / \mathrm{s}$. Calculate the shear friction velocity.
d) Calculate the wall shearing stress in a pipe of diameter 100 which carries water .The velocities at the pipe centre and 30 mm from the pipe centre are $2 \mathrm{~m} / \mathrm{s}$ and $1.5 \mathrm{~m} / \mathrm{s}$ respectively. The flow in the pipe is given as turbulent.
(6 marks)
e) Water is flowing through a rough pipe of diameter 600 mm at the rate of 600 litres $/$ second. The wall roughness is 3 mm . Find the power lost for 1 km length of pipe.
(4 marks)

