

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

THE DEGREE IN BACHELOR OF SCINCE IN MECHANICAL ENGINEERING

EMG 2416: GAS DYNAMICS AND BOUNDARY LAYER THEORY

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question One

- a) Explain the following terms
 - i. Turbulent boundary layer
 - ii. Laminar sub-layer
- b) Describe fine the following boundary layer
 - i. Boundary layer thickness
 - ii. Displacement thickness
 - iii. Energy thickness

(6 marks)

c) In the boundary layer over the face of a high spillway ,the velocity distribution was observed to have the following form:

$$\frac{u}{U} = \left[\frac{y}{\delta}\right]^{0.22}$$

The free stream velocity U at a certain section was observed to be 30m/s and the boundary layer thickness of 60 mm was estimated from the velocity distribution measured at the section. The discharge passing over the spillway was 6 m/s per metre length of spillway. Calculate

(4marks)

- i. The displacement thickness
- ii. The energy thickness
- The loss of energy up to the section under consideration. iii. (10 marks)

Question Two

- a) Define the following Terms.
 - Drag force i.
 - ii. Lift force
 - iii. Streamlined body
 - Bluff body iv.
- b) Calculate the diameter of a parachute to be used for dropping an object of mass 100 kg so that maximum terminal velocity of dropping is 5 m/s. The drag co-efficient for parachute which may be treated as hemispherical is 1.3. The density of air is 1.216 kg/m^3 (4 marks)
- c) A flat plate 1.5mx1.5m moves at 50km/h in stationery air of density 1.15kg\m3.If the co-efficients of .drag and lift are 0.15 and 0.75 respectively Determine
 - i. Drag force
 - ii. Lift force
 - iii. Resultant force
 - iv. Power required to keep the plate in motion

Question Three

- a) Explain the following term related to airfoil
 - Chold line i.
 - ii. Profile centreline
 - iii. Angle of attack
 - Camber iv.
 - Aspect Ratio v.
- b) Experiments were conducted in a wind tunnel with a wind speed of 50km/h on a flat plate of size 2m long and 1 m wide. The density of air is 1.15kg/m3. The coefficient of lift and drag are 0.75 and 0.15 respectively. Calculate
 - The lift force i.
 - ii. The drag force.
 - The resultant force iii.
 - iv. Direction of resultant force.
 - Power exerted by the air on the plate. v.
- c) A spherical steel ball of diameter 40mm and of density 8500kg/m3 is dropped in large mass of water. The co-efficient of drag of the ball in water is given as 0.45. Find
 - i. The terminal velocity of the ball in water. If the ball is dropped in air.

(5 marks)

(8 marks)

(10 marks)

(6marks)

(Take the density of air =1.25kg/m³C_D=0.1)

(5 marks)

(6 marks)

(6marks)

Question four

- a) Define the following terms of flow which depend on Mach number:
 - i. Subsonic flow
 - ii. Sonic flow
 - iii. Zone of Action
 - iv. Zone of silence
- b) A gas is flowing through a horizontal pipe at a temperature of 4°C. The diameter of the pipe is 8 cm and at a section 1-1 in this pipe, the pressure is 30,3 N/cm² (gauge). The diameter of the pipe changes from 8 cm to 4 cm at the section 2-2, where pressure is 20.3 N/cm2(gauge). Find the velocities of the gas at these sections assuming an isothermal process . Take R=287.14 Nm/kg K, and atmospheric pressure = 10N/cm² (8 marks)
- c) Find the sonic velocity for the following fluids
 - i. Crude oil of sp gravity 0.8 and bulk modulus 153036N/cm2
 - ii. Mercury having a bulk modulus of 2648700N/cm2

Question five

a)	What	is turbulence?	(2 marks)
b)	Describe the following types turbulent motions		
	i.	Wall turbulence.	
	ii.	Free turbulence.	
	iii.	Convective turbulence.	(3 marks)
c)	In a p	ipe of 360mm diameter having turbulent flow, the centre -line velocity is 7m/s and	that at 60 mm
	from	the pipe wall is 6m/s. Calculate the shear friction velocity.	(5marks)
d)	Calcu	late the wall shearing stress in a pipe of diameter 100 which carries water .The velo	ocities at the
	pipe centre and 30 mm from the pipe centre are 2m/s and 1.5m/s respectively. The flow in the pipe is		
	given	as turbulent.	(6 marks)
e)	Water is flowing through a rough pipe of diameter 600mm at the rate of 600 litres/second. The wall		
	rough	ness is 3 mm. Find the power lost for 1 km length of pipe.	(4 marks)