

TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS DECEMBER 2016 SERIES EXAMINATION

UNIT CODE: EMG 2414/ AMA4410/ AMA4306
UNIT NAME: NUMERICAL METHODS FOR ENGINEERS

SPECIAL/SUPPLIMENTARY EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. If $A A^{-1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ (2 marks)
b. Using Romberg's integration method, find the value if starting with trapezoidal rule for the given tabular values below given $h=0.8$ for $\frac{h}{2}, \frac{h}{4}, \frac{h}{8}$

x	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	1.543	1.669	1.811	1.971	2.151	2.352	2.577	2.8228	3.107

c. Evaluate
$\int_{0}^{1} \frac{1}{1+x} d x$ Using Trapezoidal rule for $\mathrm{n}=1$ and state the error bound
d. Find λ for $\left(\begin{array}{cc}\lambda & \lambda \\ 3 & \lambda-2\end{array}\right)=0$
e. Consider the system of equations

$$
\begin{aligned}
& \frac{d x}{d t}=x-y-z \\
& \frac{d y}{d t}=y+3 z \\
& \frac{d z}{d t}=3 y+z
\end{aligned}
$$

i. Write in the form
ii. Find eigen values and eigen vectors
iii. Prove that the solutions are independent
iv. Hence, write general solution
f. Determine Fourier transform of $f(t)=e^{k t}, 0 \leq t \leq \infty$
g. Given

$$
\frac{d y}{d t}=\frac{y-t}{y+t}
$$

with the initial condition $y=1$ at $t=0$
Find y approximately at $x=0.1$, in five steps using Euler's method.

QUESTION TWO (20 MARKS)

a. Define linear independence of functions
(2 marks)
b. Obtain Picard's second approximate solution of the initial value problem $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0$
c. Find the inverse of the matrix A by Gaussian method

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right)
$$

d. Solve the initial value problem

$$
\frac{d y}{d x}=x^{2}-y \quad y(0)=1
$$

With $\mathrm{h}=0.2$ on the interval $(0,0.4)$ using the forth order Runge- Kutta Method.

$$
\begin{aligned}
& \text { With } y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& \text { where } k_{1}=h f\left(t_{n}, y_{n}\right)
\end{aligned}
$$

$$
\begin{gather*}
k_{2}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
k_{3}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
k_{4}=h f\left(t_{n}+h, y_{n}+k_{3}\right) \tag{8marks}
\end{gather*}
$$

QUESTION THREE (20MARKS)

a. Determine the ad joint of a matrix A if

$$
A=\left(\begin{array}{ccc}
1 & 5 & -2 \\
3 & -1 & 4 \\
-3 & 6 & -7
\end{array}\right)
$$

Hence compute A^{-1} the inverse of the matrix
b. I) Find the determinant of the following matrix

$$
\left(\begin{array}{ccc}
-4 & 9 & 2 \\
5 & 6 & -1 \\
3 & 2 & 7
\end{array}\right)
$$

(3 marks)
ii) For the system of equations given below, form the augmented matrix hence solve for the three unknowns using Gaussian elimination method

$$
\begin{gathered}
2 x+4 y+7 z=82 \\
6 x-3 y+z=11 \\
x+2 y-5 z=-27
\end{gathered}
$$

c. Compute the integral using Simpson's $1 / 3$ rule taking $\mathrm{h}=0.125$

$$
I=\sqrt{\frac{2}{\Pi}} \int_{0}^{1} e^{\frac{-x^{2}}{2}} d x
$$

QUESTION FOUR (20 MARKS)

a. Using Crout's reduction, decompose the matrix A

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 1 & 3
\end{array}\right)
$$

In to $[L][U]$ form and hence solve the system of equations
$x+y+z=7$
$3 x+5 y+4 z=24$
$y+3 z=16$
b. Use Gauss Legendre quadrature formula to compute the integral

$$
\begin{equation*}
I=\int_{5}^{12} \frac{d x}{x} \quad \text { for } \mathrm{n}=3 \text { in the interval }(-1,1) \tag{5marks}
\end{equation*}
$$

c. Given that $A=\left(\begin{array}{cc}1+j & 2 j \\ -3 j & 1-4 j\end{array}\right)$ and that $j^{2}=-1=j . j$. Determine $\operatorname{det} \mathrm{A}$
d) If $\mathrm{A}(\mathrm{t})=\left(\begin{array}{ccc}e^{t} & 2 e^{-t} & e^{2 t} \\ 2 e^{t} & e^{-t} & -e^{2 t} \\ e^{t} & 3 e^{-t} & 2 e^{t}\end{array}\right)$
i) Find $\frac{d A}{d t}$
ii) Determine $\int_{0}^{1} A(t) d t$

QUESTION FIVE (20 MARKS)

a. Employ Taylors method to obtain an approximate value of y at $\mathrm{x}=0.2$ for the differential equation given below and compare the results with the exact solution $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0 \quad$ (5 marks)
b. Given $\frac{d y}{d x}=1+y^{2}$ approximate $y(0.8)$ using the Milne's Predictor Corrector method if

| x | 0.0 | 0.2 | 0.4 | 0.6 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| y | 0 | 0.2027 | 0.4228 | 0.6841 |

c. Consider the following system of linear equations.
$x+y+z=4$
$2 x-$
$3 y+4 z=33$
$3 x-2 y-$
$2 z=2$
Apply Crammer's rule to determine x, y and z
d. Given that

$$
A=\left(\begin{array}{cc}
3 & 2-i \\
4+3 i & -5+2 i
\end{array}\right)
$$

Find the adjoint of A

THIS IS THE LAST PRINTED PAGE

