

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

DECEMBER 2016 SERIES EXAMINATION

UNIT CODE: EMG 2414/ AMA4410/ AMA4306 UNIT NAME: NUMERICAL METHODS FOR ENGINEERS

SPECIAL/SUPPLIMENTARY EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

- a. If $AA^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 - b. Using **Romberg's** integration method, find the value if starting with trapezoidal rule for the given tabular values below given h = 0.8 for $\frac{h}{2}$, $\frac{h}{4}$, $\frac{h}{8}$ (7 marks)

(2 marks)

x	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
Y=f(x)	1.543	1.669	1.811	1.971	2.151	2.352	2.577	2.8228	3.107

- c. Evaluate $\int_{0}^{1} \frac{1}{1+x} dx \text{ Using Trapezoidal rule for n=1 and state the error bound} \qquad (4 \text{ marks})$ d. Find λ for $\begin{pmatrix} \lambda & \lambda \\ 3 & \lambda - 2 \end{pmatrix} = 0$ (3 marks) e. Consider the system of equations $\frac{dx}{dt} = x - y - z$ $\frac{dy}{dt} = y + 3z$ $\frac{dz}{dt} = 3y + z$ i. Write in the form ii. Find eigen values and eigen vectors (4 marks) iii. Prove that the solutions are independent (2 marks)
 - iv. Hence, write general solution (1 marks)
- f. Determine Fourier transform of $f(t) = e^{kt}$, $0 \le t \le \infty$ (4 marks)
- g. Given

 $\frac{dy}{dt} = \frac{y-t}{y+t}$

with the initial condition y = 1 at t = 0

Find y approximately at x = 0.1, in five steps using Euler's method. (3 marks)

QUESTION TWO (20 MARKS)

- a. Define linear independence of functions (2 marks) b. Obtain Picard's second approximate solution of the initial value problem $\frac{dy}{dx} = \frac{x^2}{y^2+1}$, y(0) = 0(4 marks)
- c. Find the inverse of the matrix A by Gaussian method

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$
(6 marks)

d. Solve the initial value problem

 $\frac{dy}{dx} = x^2 - y \qquad y(0) = 1$

With h=0.2 on the interval (0, 0.4) using the forth order Runge- Kutta Method.

With
$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where $k_1 = hf(t_n, y_n)$

y

$$k_{2} = hf(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2})$$

$$k_{3} = hf(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2})$$

$$k_{4} = hf(t_{n} + h, y_{n} + k_{3})$$

QUESTION THREE (20MARKS)

a. Determine the ad joint of a matrix A if

$$A = \begin{pmatrix} 1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7 \end{pmatrix}$$
 Hence compute A^{-1} the inverse of the matrix

b. I) Find the determinant of the following matrix

$\begin{pmatrix} -4 & 9 & 2 \\ 5 & 6 & -1 \\ 3 & 2 & 7 \end{pmatrix}$

(3 marks)

ii) For the system of equations given below, form the augmented matrix hence solve for the three unknowns using Gaussian elimination method (5 marks)

$$2x + 4y + 7z = 82$$

$$6x - 3y + z = 11$$

$$x + 2y - 5z = -27$$

c. Compute the integral using Simpson's 1/3 rule taking h=0.125

$$I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{\frac{-x^2}{2}} dx$$

QUESTION FOUR (20 MARKS)

a. Using Crout's reduction, decompose the matrix A

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 1 & 3 \end{pmatrix}$$

In to [L] [U] form and hence solve the system of equations

$$x + y + z = 7$$

$$3x + 5y + 4z = 24$$

$$+ 3z = 16$$

(7 marks)

b. Use Gauss Legendre quadrature formula to compute the integral

$$I = \int_{5}^{12} \frac{dx}{x} \quad \text{for n=3 in the interval (-1, 1)}$$
 (5 marks)

(6 marks)

(8 marks)

(6 marks)

c. Given that $A = \begin{pmatrix} 1+j & 2j \\ -3j & 1-4j \end{pmatrix}$ and that $j^2 = -1 = j$. *j*. Determine det A (2 marks)

d) If A(t) =
$$\begin{pmatrix} e^t & 2e^{-t} & e^{2t} \\ 2e^t & e^{-t} & -e^{2t} \\ e^t & 3e^{-t} & 2e^t \end{pmatrix}$$

i) Find
$$\frac{dA}{dt}$$

ii) Determine $\int_0^1 A(t) dt$

QUESTION FIVE (20 MARKS)

- a. Employ Taylors method to obtain an approximate value of y at x=0.2 for the differential equation given below and compare the results with the exact solution $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 (5 marks)
- b. Given $\frac{dy}{dx} = 1 + y^2$ approximate y(0.8) using the Milne's Predictor Corrector method if

ил				
x	0.0	0.2	0.4	0.6
У	0	0.2027	0.4228	0.6841
				(7 marks)

Consider the following system of linear equations. C.

x + y + z = 4	2x -
3y + 4z = 33	3x - 2y -
2z = 2	
Apply Crammer's rule to determine x, y, and z	

Apply Crammer's rule to determine x, y and z

d. Given that

 $A = \begin{pmatrix} 3 & 2-i \\ 4+3i & -5+2i \end{pmatrix}$ Find the adjoint of A

THIS IS THE LAST PRINTED PAGE

© Technical University of Mombasa

Page 4

(6 marks)

(2 marks)

(2 marks)

(4 marks)