

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2413: MACHINE DESIGN

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID Pocket Calculator This paper consists of **FIVE** questions. Attempt question ONE (**Compulsory**) and any other **TWO** questions.

Do not write on the question paper.

Question ONE(a)

b) Explain the procedure for selecting a bearing to withstand radial load only.	(9 marks)
ii). Discuss the strength of a transverse fillet weld	(7 marks)
i) Explain the functions of packings, gaskets and seals as machine elements.	(4 marks)

c) A single plate clutch, effective on both sides, is required to transmit 25kW at 3000 rpm. Determine the outer and inner diameters of frictional surface if the coefficient of friction is 0.255, ratio of diameters is 1.25 and the maximum pressure is not to exceed is $0.1N/mm^2$. Also, determine the axial thrust to be provided by springs. Assume the theory of uniform wear and uniform pressure.

(10 marks)

Question TWO

a) Given the torque transmitted by shaft II in Fig 3(a) is T₂=1.738kNm. The analysis of the loads and reactions on the shaft is given below and the preselected bearings on the supports:

 $\alpha = 20^{\circ} F_{t1} = 13770N; F_{t2} = 31600N F_{r1} = 5011N; F_{r1} = 11500N F_{tA} = 82N; F_{tB} = 17920 N; F_{rA} = 30 N F_{rB} = 6521 N$ Taking service factor for both bearings as 1.05 and n=620 min⁻¹

Bearing No.	d (mm)	D (mm)	C (kN)	$C_0(kN)$	k⊤	k _b	V	Х	Y
Radial bearing 212	60	110	52000	31000	1	1.3	1.2	1	2.3
Roller bearings 32312	60	130	123000	76500	1	1	1	1	2.9

i) Draw the diagrams for the horizontal, vertical, combined and equivalent moments on the shaft.

ii) The viability of life for the preselected bearings. (20 marks)

Question THREE

a) Fig 3a) is a schematic design of a helicopter transmission system. Design the shafts *I*, *II* & *III* in the schematic diagram given the following parameters:

 $T_I = 546kNm \quad \frac{d}{D} = 0.85, \ \tau_{max} = 80MPa \ , T_{II} = 0.8T_I \ , T_{III} = 0.87T_{II} \$ Assume no loss on power

transmission.

(6 marks)

b) Given the nominal diameter of the gear for is d=77.5mm, the pressure angle α =20° for the gear teeth and the length of the shaft for the shaft design as a beam is given in Fig 3(b) for the shaft I,

i) find the reactions at the bearing support A & B.

ii) Draw the horizontal, vertical, combined and equivalent bending moments of the shaft I.

(14 marks)

Question FOUR

b) Sketch out and design a clamp coupling to transmit 80 kW at 150 rpm. The allowable shear stress for the shaft and key is 40 MPa and the number of bolts connecting the two halves are six. The permissible tensile stress for the bolts is 70MPa. The coefficient of friction between the muff and the shaft surface may be taken as 0.3 (20 marks)

Question FIVE

a) Discuss in detail the complete design procedure of a shaft.	(14 marks)
b) Mention 6 design requirements for a good shaft coupling.	(6 marks)

Fig 3(a)

Fig 3(b)

Table for key dimensions in relation to shaft size.

Shaft	Кеу	Кеу	
diameter	Width	thickness	
& upto	(mm)	(mm)	
(mm)			
58	18	11	
65	20	12	
75	22	14	
85	25	14	
95	28	16	
110	32	18	
130	36	20	
150	40	22	
170	45	25	
200	50	28	
230	56	32	
260	63	32	
290	70	36	
330	80	40	
380	90	45	
440	100	50	

Standard Wetric Doit Table	Standard	Metric	Bolt	Table
----------------------------	----------	--------	------	-------

Nominal size and	Pitch of thread	Width across flats		Height of head		Tapping	Clearance
thread diameter	(coarse pitch series)	(max)	(min)	(max)	(min)	drill	drill
M1.6	0.35	3.2	3.08	1.225	0.975	1.25	1.65
M2	0.4	4.0	3.88	1.525	1.275	1.60	2.05
M2.5	0.45	5.0	4.88	1.825	1.575	2.05	2.60
M3	0.5	5.5	5.38	2.125	1.875	2.50	3.10
M4	0.7	7.0	6.85	2.925	2.675	3.30	4.10
M5	0.8	8.0	7.85	3.650	3.35	4.20	5.10
M6	1	10.0	9.78	4.15	3.85	5.00	6.10
M8	1.25	13.0	12.73	5.65	5.35	6.80	8.20
M10	1.5	17.0	16.73	7.18	6.82	8.50	10.20
M12	1.75	19.0	18.67	8.18	7.82	10.20	12.20
M14	2	22.0	21.67	9.18	8.82	12.00	14.25
M16	2	24.0	23.67	10.18	9.82	14.00	16.25
M18	2.5	27.0	26.67	12.215	11.785	15.50	18.25
M20	2.5	30.0	29.67	13.215	12.785	17.50	20.25
M2.2	2.5	32.0	31.61	14.215	13.785	19.50	22.25
M24	3	36.0	35.38	15.215	14.785	21.00	24.25
M27	3	41.0	40.38	17.215	16.785	24.00	27.25
M30	3.5	46.0	45.38	19.26	18.74	26.50	30.50
M33	3.5	50.0	49.38	21.26	20.74	29.50	33.50
M36	4	55.0	54.26	23.26	22.74	32.00	36.50
M39	4	60.0	59.26	25.26	24.74	35.00	39.50
M42	4.5	65.0	64.26	26.26	25.74	37.50	42.50
M45	4.5	70.0	69.26	28.26	27.74	40.50	45.50
M48	5	75.0	74.26	30.26	29.74	43.00	48.75
M52	5	80.0	79.26	33.31	32.69	47.00	52.75
M56	5.5	85.0	84.13	35.31	34.69	50.50	56.75
M60	5.5	90.0	89.13	38.31	37.69	54.50	60.75
M64	6	95.0	94.13	40.31	39.69	58.00	64.75
M68	6	100.0	99.13	43.31	42.96	62.00	68.75