Faculty of Engineering and Technology
 Department of Mechanical \& Automotive Engineering UNIVERSITY EXAMINATION FOR:
 BSc. Mechanical Engineering
 EMG 2411 : SOLIDS \& STRUCTURAL MECHANICS IV
 END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2016
 TIME: 2 HOURS
 DATE: 5 Dec 2016

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions. All Questions carry equal marks.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question 1

Fig Q1 shows a beam of length ' $2 a$ ' metres fixed at the left-hand end and propped at the centre. The beam supports a uniformly distributed load of magnitude $w N / m$ over a span of ' a ' metres as well as a point load of magnitude ' $2 w a$ ' Newtons and a clockwise couple of magnitude ' $2 w a^{2}{ }^{\prime} N-m$ at the free end.
(i) Derive expressions for the reactions at the supports
(ii) Derive expressions for the slope and the deflection at the free end of the beam.
E - Modulus of elasticity of the beam
I - Second Moment of area of the beam cross-section

Question 2

Fig Q2 shows the cross-section of a two-celled tube subjected to a torque T. The dimensions of the sections are given as functions of ' a ' and the thicknesses of the various sections are given as functions of ' t '.

Derive in terms of the indicated parameters
(i) the Shear stresses in all the walls
(ii) the expression for the angle of twist per unit length
$G=$ Torsional Modulus of Rigidity of the material

Question 3

Fig Q3 shows a cross-section of a beam made from a material of thickness ' t ' and the rest of the dimensions are indicated as functions of ' a '.
(i) Calculate the magnitude of the maximum Shear stress
(ii) Determine the position of the Shear centre

Question 4

Fig Q4 shows a strut fixed at the left-hand end and supporting a compressive load P as well as a bending moment M at the free end.

Show that :

$$
M=\frac{P a \operatorname{Cosn} l}{(1-\operatorname{Cosn} l)}
$$

where l is the length of the strut and ' a ' the deflection at the free end

Question 5

A circular plate of radius R and thickness ' t ' is fixed at the periphery and the plate supports a uniformly applied pressure ' p ' per unit area.
(i) Show that the maximum radial stress per unit arc $\left(\sigma_{r} \max \right)$ is given by

$$
\sigma_{r} \max =\frac{3 p R^{2}}{4 E t^{2}}
$$

And the maximum circumferential stress per unit radius $\left(\sigma_{\theta} \max \right)$ is given by

$$
\sigma_{\theta} \max =\frac{3 p R^{2}(1+v)}{8 t^{2}}
$$

(iii) show that at $r=0$ the bending moment in the circumferential direction per unit length of radius is given by

$$
M_{\theta}=\frac{p R^{2}(1+v)}{16}
$$

And (at $r=0$) the bending moment in the radial direction per unit length of circumference is given by

$$
M_{r}=\frac{p R^{2}(1+v)}{16}
$$

Assume that at any radius ' r ' the bending moment in the radial direction per unit length of arc is given by

$$
M_{r}=-D\left[\frac{d^{2} w}{d r^{2}}+\frac{v}{r} \frac{d w}{d r}\right]
$$

And the bending moment in the circumferential direction per unit length of radius is given by

$$
M_{\theta}=-D\left[\frac{1}{r} \frac{d w}{d r}+v \frac{d^{2} w}{d r^{2}}\right]
$$

Also $\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right)\right]=\frac{Q}{D}$
Where Q is the Shear Force per unit length and $D=\frac{E t^{3}}{12\left(1-v^{2}\right)}$

FiGQ2

