Faculty of Engineering and Technology
 Department of Mechanical \& Automotive Engineering UNIVERSITY EXAMINATION FOR:
 BSc. Mechanical Engineering
 EMG 2411 : SOLIDS \& STRUCTURAL MECHANICS IV
 END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2016
 TIME: 2 HOURS
 DATE: 5 Dec 2016

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions. All Questions carry equal marks.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question 1.

Fig Q1 shows a beam of length $2 a$ metres fixed at both ends and supporting a uniformly distributed load of magnitude $w N / m$ over a distance a metres and a clockwise couple of magnitude $2 w a^{2} N-m$ applied at the centre of the beam.
(i) Derive expressions for the reactions at the supports
(ii) Derive expressions for the slope and deflection at the centre of the beam.

E- Modulus of Elasticity of the beam
I- Second Moment of Area of the beam cross-section

Question 2

Fig Q2 shows the cross-section of a thin-walled two=celled tube subjected to a torque T. The dimensions of the sections are given as functions of ' a ' and the thicknesses of the various sections are indicated as functions of ' t '.
Derive in terms of the indicated parameters
(i) the Shear stresses in all the walls
(ii) the expression for the angle of twist per unit length
$G=$ Torsion modulus of rigidity of the material

Question 3

Fig Q3 shows the cross-section of a beam made from a material of thickness ' t ' and the other dimensions are indicated as functions of ' a '. If the beam supports a vertical acting Shear Force ' V '.
(i) Derive an expression for the Maximum Shear Stress.
(ii) Determine the position of the Shear Centre

Question 4

A slender horizontal strut with pin-ends carries a horizontal compressive load ' P ' and a vertical centre point load W. If the length of the strut is given by l
(a) show that the centre point deflection of the strut is given by:

$$
\delta=\frac{W}{2 P}\left[\frac{1}{n} \tan \frac{n l}{2}-\frac{l}{2}\right]
$$

Where $n=\sqrt{\frac{P}{E I}}$
E being the Modulus of Elasticity of the material and I, the Second Moment of area of the cross-section.
(b) If this strut has a circular cross-section of diameter 40 mm ; length 3 m and an axial compressive load of magnitude $140 k N$, calculate the acceptable value of the vertical load W if the maximum allowable compressive stress is $260 \mathrm{MN} / \mathrm{m}^{2}$.

$$
E=210 G N / m^{2}
$$

Question 5

A steel circular plate is firmly clamped along the edges at a radius R_{0} per unit area and a central point and carries a central point load N. If the thickness of the plate is ' t ', the Modulus of Elasticity is E and the Poisson's ratio is ' v '
(a) derive an expression for the deflection ' w ' of the plate at a radius $r=0$
(b) derive an expression for the radial stress $\left(\sigma_{r}\right)$ per unit arc length at $r=R_{0}$

Assume that at any radius ' r ', the bending moment in the radial direction per unit length of arc is given by

$$
M_{r}=-D\left[\frac{d^{2} w}{d r^{2}}+\frac{v}{r} \frac{d w}{d r}\right]
$$

And the bending moment in the circumferential direction per unit length of radius is given by

$$
M_{\theta}=-D\left[\frac{1}{r} \frac{d w}{d r}+v \frac{d^{2} w}{d r^{2}}\right]
$$

Also

$$
\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right)\right]=\frac{Q}{D}
$$

where Q is the Shear Force per unit length and $D=\frac{E t^{3}}{12\left(1-v^{2}\right)}$

