

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2411 : SOLID AND STRUCTURAL MECHANICS IV

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question 1

Fig Q1 shows a two-celled tube with a cross-section whose dimensions are indicated in millimeters and $t_1 = 4mm$,

 $t_2 = 6.2mm$ and $t_3 = 2.8mm$.

If a torque of magnitude 11.6kN - m is applied, calculate

- (a) the stresses in all the walls
- (b) the overall angle of twist per unit length Torsional Modulus of Rigidity $G = 80GN/m^2$

Question 2

Fig Q2 shows a beam of length l fixed at the left-hand end and propped at the

right-hand end, while supporting a centre-point load P.

(i) Calculate the reactions at the supports

- (ii) Derive expressions for the deflection at a distance $\frac{l}{4}$ and a distance $\frac{l}{2}$ from the fixed end of the beam
 - E = Modulus of Elasticity of the beam material
 - I = Second Moment of Area of beam cross-section about a horizontal axis through

Its centre of gravity.

Question 3

Fig Q3 shows the cross-section of a cantilever beam of length l made from a material of thickness t. The beam has a small slit along its whole length, the slit location being as shown in the figure. A vertical force P is applied at the free end of the beam. The line of action of force P is such that only bending (and no twisting) of the cross-section takes place.

Determine

- (a) the Shear Stresses and sketch their distribution along the faces *AB*, *BC*, *CD*, *and DE* of the cross-section.
- (b) the position of the Shear Centre of the cross-section.

Question 4

(a) A strut of uniform cross-section is of length l and it is pinned at the ends. It carries an axial compressive load P as well as a laterally applied centre point load W.

Show that the maximum deflection is given by

$$\delta = \frac{W}{2nP} \tan \frac{nl}{2} - \frac{Wl}{4P}$$

Where $n = \sqrt{\frac{P}{EI}}$ and *I* is the Second Moment of Area of the cross-section

(b) Derive an expression for the maximum compressive stress in the strut if one assumes the strut to be of solid cross-section with diameter a.

Question 5

A circular plate has diameter 600mm and it is made from a material of thickness

0.018mm . The plate is clamped around its periphery and it is subjected to a

concentrated centre point load of magnitude 450N.

Calculate the magnitude of the radial stress at the fixed end.

Modulus of Elasticity $E = 200 GN/m^2$

Poisson's ratio v = 0.3

Assume that at any radius r, the Bending Moment in the radial direction per unit

length of arc is given by

$$M_r = -D\left[\frac{d^2w}{dr^2} + \frac{v}{r}\frac{dw}{dr}\right]$$

And the Bending Moment in the circumferential direction per unit length of

radius is given by

$$M_{\theta} = -D \left[\frac{1}{r} \frac{dw}{dr} + v \frac{d^2 w}{dr^2} \right]$$

Also

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{Q}{D}$$

where Q is the Shear Force per unit length and

$$D = \frac{Et^3}{12(1 - v^2)}$$

