

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2407 : WIND TUNNEL EXPERIMENTAL TECHNIQUES

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, pocket calculator, examination pass and student ID

This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE

(a) Discuss the DDS – suite with emphasis on the analysis phase.

(b)Proof which of the following expressions describes better velocity distribution for a laminar boundary layer on a flat plate in the absence of a stream wise pressure gradient. Give the reason for your decision.

$\frac{u}{u_m} =$	$=\frac{3}{2}\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)$	$\frac{u}{u_m} = \frac{3}{2} \left(\frac{y}{\delta}\right) - \frac{1}{2} \left(\frac{y}{\delta}\right)^2$	(7 marks)
-------------------	--	---	-----------

(c) Discuss the shadow graph and schlieren methods as flow visualization techniques used in wind tunnels. (12 marks)

(d) Explain four uses of wind tunnels.

Question TWO

Describes an experiment to determine the reduction of drag by inducing turbulence in the boundary layer, providing key equations, and analysis of experimental results. (20 marks)

(7 marks)

(4 marks)

Question THREE

(a) Discuss Euler's Number, stating its symbol significance and field of application.

(b) A 7.2 m high and 15m long spillway discharges 94m³/s discharge under a head of 2.0 If scale model of this spillway is to be constructed, determine model dimensions, head over spillway model and the model discharge. If model experiences a force of 7500N, determine force on the prototype. (9 marks)

(c) A streamlined train is 200m long with a typical cross-section having a perimeter of 9m above the wheels. If the kinematic viscosity of air at the prevailing temperature is $1.5 \times 10^{-5} \text{ m}^2/\text{s}$ and density 1.24 kg/m^3 , determine the appropriate surface drag (friction drag) of the train when running at 90 km/h. Make allowance for the fact that boundary layer changes from laminar to turbulent on the train surface. (7 marks)

Question FOUR

(a) Discuss similitude and the practical applications of modeling

(b) A train is 100m long, 2.8 m wide and 7.5m high. The train travels at 180 km/h through air of density 1.2 kg/m³ and the kinematic viscosity $1.5 \times 10^{-5} \text{ m}^2 \text{s}^{-1}$. You may assume that the frictional drag of the train is equivalent to the drag of a turbulent boundary layer on one side of a flat plate of length l= 100m and breath b=8.3m. Taking that

$$\delta = 0.37 \left(\frac{v}{u_m}\right)^{1/5} x^{4/5} \quad \text{calculate;}$$

(i) The boundary layer thickness at the rear of the train.

(ii)The frictional drag acting on the train.

(iii)The power required to overcome the frictional drag.

Question FIVE

(a) Discuss & illustrate with diagrams laser speckle velocimetry as a flow visualization technique in wind tunnel tests.

(b) Explain the principle of working of a thermal anemometer.

(4 marks)

(8 marks)

(12 marks)

(10 marks)

(10 marks)