TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING DIPLOMA IN ELECTRICAL POWER ENGINEERING (DEPE4)

EEP 2204 ELECTRICAL MACHINES I

END OF SEMESTER EXAMINATIONS

SERIES: APRIL, 2016

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. You should have the following for this examination:
 - Answer Booklet
 - A Non-programmable Scientific Calculator
- 2. This paper consists of FIVE Questions
- 3. Answer ANY THREE Questions
- 4. All questions carry equal marks.
- 5. This paper consists of THREE printed pages.
- © 2016 Technical University of Mombasa

Question ONE

- a) State:
 - i. Ohm's law for magnetic circuit.
 - ii. What is meant by electromagnetic torque in motors?

(6 marks)

b) Describe the voltage equation of a motor

(6 marks)

- c) A 4 pole wave wound motor is connected to a 250V d.c supply. The armature has 700 conductors and a resistance of 0.5Ω . and the flux per pole value of 0.03wb. Determine:
 - i. The armature current if motor speed is 320 r.p.m
 - ii. Torque developed at the above stated speed

(8 marks)

Question TWO

(a) Explain how torque is produced in an induction motor

(5 marks)

(b)

- i. Explain why an induction motor takes in a high starting current.
- ii. Explain why a synchronous motor cannot run at synchronous speed. (5 marks)

(c)

- i. Define synchronous speed
- ii. Describe the working principle of an Induction motor
- iii. State why Three Phase Induction motors are self-starting and why Single Phase induction motors are not self-starting

(10 marks)

Question Three

Question Tiree			
(a) State:			
	i.	Lenz law	
	ii.	Back EMF	(4 marks)
(b) Descri	ibe the three principal losses in DC machines	(8 marks)
(c	(c) An 8 pole d.c generator has 800 conductors and a flux per pole of 0.04wb. Determine the EMF generated if it runs at 300 rev/min and is:		
	i.	Wave wound	
	ii.	The speed it must run to produce the same e.m.f when lap wound	(8 marks)
Question FOUR (a) State the EMF equation of a generator clearly differentiating between the wave wound and the lap wound generators			
	una un	e rap would generators	(6 marks)
(b) Explai	in how speed control is achieved in DC machines	(4 marks)
(c	·)		
	i. With the aid of a diagram and waveforms show that a three phase winding		
		connected to a three phase supply produces a rotating magnetic f	ield.
	ii.	State TWO characteristics of this field.	
			(10 marks)

Question FIVE

(a) Define slip in Induction machines

(2 marks)

(b) Draw the equivalent circuit diagram of a single phase induction motor at stand still

(4 marks)

(c)

- A three phase 4 pole induction motor has a synchronous speed of 30 rev/s.
 Determine the frequency of the supply to the stator winding.
- **ii.** An 8 pole three phase 415 volts, 50Hz induction motor has a full load slip of 3.5%. Determine:
 - **I.** The synchronous speed
 - II. Rotor speed
 - **III.** Frequency of rotor currents at slip 0.04
 - **IV.** Rotor frequency when rotor runs at 520r.p.m
 - V. Rotor current frequency at standstill

(14 marks)