

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Mechanical & Automotive Engineering UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATION FOR:

BSc. Mechanical Engineering

EMG 2401: INDUSTRIAL HYDRAULICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: AUGUST2017 TIME: 2 HOURS

DATE: Pick DateAug2017

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of **FIVE** questions.

Question ONE is COMPULSORY

Attempt any other **TWO** questions.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Mobile phones are not allowed in the examination room.

Question ONE (COMPULSORY: 30 Marks)

- a) State FIVE (5) advantages of hydraulic systems over other methods of power transmission. (5 Marks)
- b) i) Outline THREE functions of hydraulic system reservoirs.
 - ii) Explain the principle of operation of the following hydraulic filters.
 - Surface filtration
 - Depth filtration

(5 Marks)

c) The hose supplying the cylinder operating the bucket of a large excavator has fluid at 1000 psi flowing at 5 gpm. What is the available power in the line?

(5 Marks)

d) A hydraulic system is to be designed for clamping work and to perform drilling operation. The system is to consist of the following components:

- Reservoir
- Pump
- Safety Valve
- Manually operated spring centered three position four way directional control valve
- Throttle check valve
- Hydraulic cylinder

Using two line diagram and hydraulic symbols, design and draw a suitable circuit diagram for the system. (15 Marks)

Question TWO (20 Marks)

- a) i) Mention FOUR (4) major functions of a hydraulic accumulator (2 Marks)
 ii) Assisted by diagrams, differentiate between a spring-loaded accumulator and a bag-type accumulator. For any of these accumulators, describe its operations and
 - the limitations. (4 Marks)
- b) i) Differentiate between filters and strainers and name the THREE (3) parts of a Full-flow hydraulic filter and their functions. (4 Marks)
 - ii) Describe the structure and operation of a proportional flow filter and state when it can be used. (3 Marks)
- c) A 30 cm diameter pipe carries lubrication oil of 0.9 specific gravity at a velocity of 3 m/s. Find the mass flow rate of oil. What will be the oil velocity at another section where diameter is reduced to 20 cm. (4 Marks)
- d) Water under a pressure of 29.43 N/cm² (g) and velocity of 2 m/s is flowing through a 5 cm diameter pipe. Find the total head of water at a section 5 m above datum line. (3 Marks)

Question THREE (20 Marks)

a) Explain the working principles of the following devices:

I. Hydraulic Press (3 Marks)

II. Hydraulic Lift (3 Marks)

III. Hydraulic Intensifier (3 Marks)

b) A certain machinery is operated with a hydraulic accumulator through a pipe 180 m long and 100 mm diameter. The accumulator has ram 250 mm diameter and 3 m stroke and is loaded with 345 kN weight. It is fed with water from a three throw pump at 45 rpm. The plunger of the pump has a diameter of 45 mm and stroke of 350 mm; the slip being 3 per cent. If the machinery absorbs 36.8 kW

power, calculate the longest period for which it can be operated continuously. Take friction factor, f=0.032. (11 Marks)

Question FOUR (20 Marks)

- a) Outline two possible causes and remedies for each of the following trouble in hydraulic systems:
 - i) Absence of proper speed and torque of the hydraulic motor.
 - ii) Sudden drop of pressure in the accumulator. (6 Marks)
- a) A jet of water is discharged through a nozzle with an effective diameter of 75 mm and a velocity of 22.5 m/s. Calculate the power of the issuing jet.
 If the nozzle is supplied from a reservoir which is 30 m above it, what is the loss of head in the pipeline and nozzle and the efficiency of power transmission?
 (14 Marks)

Question FIVE (20 Marks)

- a) Name two types of hydraulic pump in each of the following categories:
 - Non-Positive Displacement
 - Positive Displacement

With the aid of a sketch, explain the operation of lobe pump. (8 Marks)

- b) State Seven (7) requirements imposed on a hydraulic liquid that make it acceptable to be used in hydraulic systems. (7 Marks)
- c) With the aid of a diagram, state the following:
 - i) Interaction of hydraulic and atmospheric pressures
 - ii) Effect of friction on pressure (5 Marks)

USEFUL RELATIONSHIPS:

Table 1: Conversion between Pressure Units

	Pascals (Pa)	Megapascal (MPa)	Bar (Bar)	lbs-sq-in (Psi)
I Pa	1	10-6	10-5	145 x 10 ⁻⁶
1 MPa	10^{6}	1	10	145
1 Bar	10^{5}	0.1	1	14.5
1 Psi	6895	6.895×10^{-3}	0.06895	1

Table 2: Conversion between Volume Flow Rate Units

	Gallons/minute (gpm)	liter/minute (lpm)	cubicmeter/sec (m³/s)
1 gpm	1	3.785	6.31 x 10 ⁻⁵
1 lpm	0.264	1	1.67 x 10 ⁻⁵
$1 \mathrm{m}^3/\mathrm{s}$	1.585×10^4	6×10^4	1