TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

(BSME) Y3-S2

EMG 2312: METROLOGY

SPECIAL/SUPPLEMENTARY EXAMINATIONS

SERIES: MAY 2016

TIME: 2 HOURS

INSTRUCTIONS:

- ❖ You should have; Answer booklet,; Drawing instruments and Scientific calculator
- This paper consists of FIVE questions
- ❖ Attempt any THREE questions.

This paper consists of THREE printed pages

QUESTION 1 (a) (i) In taking measurements using the gear tooth vernier, derive the expression for gear tooth width and height setting (5 marks)

- (ii) A spur gear of 21 teeth and module 3 is to have its teeth measured using the gear tooth vernier. Evaluate the vernier width and height setting (5 marks)
- b) (i) For a spur gear using the gear tooth vernier derive the expression for gear tooth width and height setting for the constant chord method (5 marks)
- (ii) A spur gear of 22 teeth and module 4 is to have its teeth measured by the constant chord method. Determine the vernier width and height setting (5 marks)

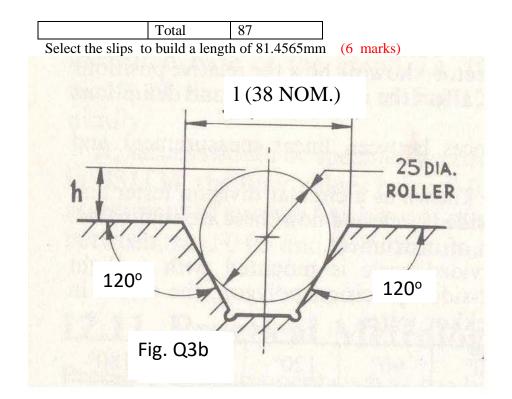
QUESTION 2

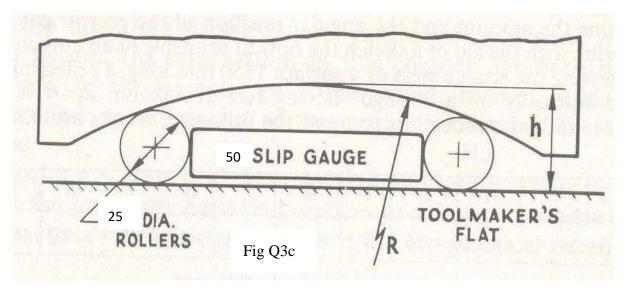
Sample	Measurements per sample						
No	Hundredths of one mm.						
1	622	623	622	624	623		
2	623	624	625	623	624		
3	624	623	625	623	624		
4	624	624	625	625	626		
5	624	624	625	625	626		
6	624	625	626	624	625		
7	625	625	626	626	625		
8	626	625	625	625	627		
9	626	626	627	626	626		
10	626	627	627	628	626		

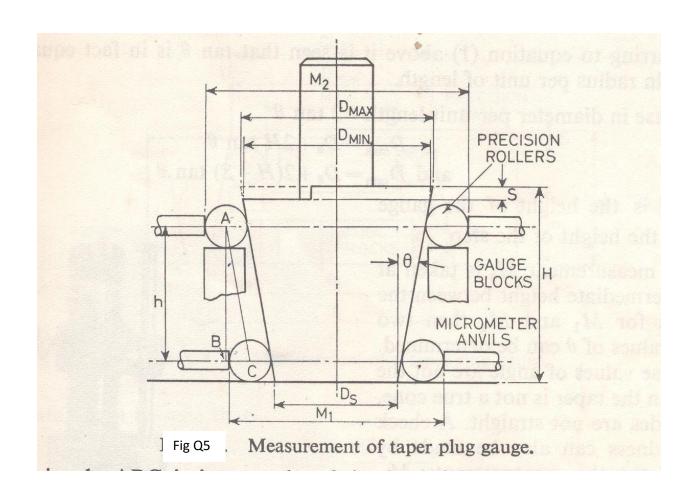
The table shows samples of five taken at regular intervals from a process; 10 samples in all being taken. Plot the \bar{x} and w-charts.

QUESTION3

- a) Describe the main requirements of the sine bar. (5 marks)
- b) Figure Q3b shows a gauge made in the geometrical profile shown. Determine the dimension h to the nearest 0.002mm. On such a gauge the dimension h is found to be correct; but each of the 120° angles is found to be four minutes of arc undersize. Determine the error introduced into the dimension 1 to the nearest 0.002mm. (10 marks)
- c) Figure Q3c shows a method used to determine large radius of curvature by measuring dimension h. If the dimension h=32.49mm, determine the radius of curvature R. (5 marks)


QUESTION4


- a) With respect to testing of screw threads, derive the expression for:
 - (i) Best wire size
 - (ii) Simple effective diameter. (11 marks)
- b) On testing a given thread of flank angle 30° and pitch 3mm, the wire available was of diameter 2mm and resulted in the dimension T under the wires of 49.132mm. Determine:
 - i) Best wire size
 - ii) Simple effective diameter. (4 marks)
- c) Determine the diameter of a large bore measured with a pin gauge of length 450mm that rocks for 37mm. (5 marks)


QUESTION5

- a) (i) Derive from first principles the Dmax and Dmin expressions for the taper plug gauge shown (Fig Q5)
 - (ii)On such a taper plug gauge the roller diameter is 10mm, h=53mm, H=68mm, $M_2=49.27$ mm, $M_1=41.04$ mm and S=6mm. Determine:
 - (I) Taper angle
 - (II) D_s
 - $(III) \qquad D_{min}$
 - (IV) D_{max} (14 marks)
- b) The M87 set of slip gauges has the following pieces (Table Q5)

Range (mm)	Steps (mm)	No. of pieces
Wear blocks 2.5	-	2
1.001 to 1.009	0.001	9
1.01 to 1.49	0.01	49
0.5 to 9.5	0.5	19
10 to 90	10	9
1.0005	-	1

FACTORS USED IN \bar{x} CHARTS

Sample size n	Warning factor A ¹ 0.025	Action factor A ¹ 0-001	
2	1.229	1-937	
์ง	0.668	1.054	
4	0.476	0.750	
3	0.377	0.594	
6	0.316	0.498	
7	0.274	0.432	
8	0.244	0.384	
9	0.220	0.347	
10	0.202	0.317	

FACTORS USED IN w CHARTS

Sample size n	Upper action factor D ¹ 0.999	Upper warning factor D ¹ 0.975	Lower warning factor D ¹ 0.025	Lower action factor D ¹ 0.001
2	4.12	2.81	0.04	0.00
3	2.98	2.17	0.18	0.04
4	2.57	1-93	0.29	0.10
5	2.34	1.81	0.37	0.16
5	2.21	1.72	0.42	0.21
7	2.11	1.66	0.46	0.26
, 0 2	2.04	1.62	0.50	0.29
9	1.99	1.58	0.52	0.32
10	1.93	1.56	0.54	0.35
		EIC O2		

FIG Q2