

TECHNICAL UNIVERSITY OF MOMBASA

UNIVERSITY EXAMINATIONS 2015/2016
EXAMINATION FOR THE DEGREE OF BACHELOR OF COMMERCE
BMS 4405: OPERATIONS RESEARCH II
END OF SEMESTER EXAMINATIONS
SERIES: SEPTEMBER 2016
DATE: SEPTEMBER 2016
B
DURATION: 2 HOURS
INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO
QUESTION ONE
(a.) Explain the
(i.) M-method
(4 marks)
(ii.) Two-phase method
of solving the $\mathbf{L P}$ problem
(b.) Give a summary of the steps used in the Two-phase method
(c.) (i.) Use the two-phase method to solve the LP problem:

$$
\text { Minimize } z=4 x_{1}+x_{2}
$$

$$
\begin{aligned}
& 3 x_{1}+x_{2}=3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Find the basic feasible solution
(ii.) Find the optimal solution

QUESTION TWO

(a.) The states of a Markov Chain can be classified based on the transition probability p_{ij} of \mathbf{P}. Explain the following statements:
(i.) A state j is absorbing
(ii.) A state j is transient
(iii.) A state j is recurrent
(iv.) A state j is periodic
(b.) (i.) Define the steady-state probability in an Ergodic Markov Chain
(ii.) Explain the term "mean first return time"
(c.)(i.) Determine the steady-state probability distribution, given the transition matrix

$$
P=\left(\begin{array}{ccc}
0.3 & 0.6 & 0.1 \\
0.1 & 0.6 & 0.3 \\
0.05 & 0.4 & 0.55
\end{array}\right)
$$

(ii.) Compute the mean first return time
(4 marks)

QUESTION THREE

(a.) Give the three basic elements of the Dynamic Programming Model
(b.) Describe the Knapsack/Fly-Away kit/Cargo-Loading Model
(c.) A 4-ton vessel can be loaded with one or more of three items. The following table gives the unit weight, w_{i}, in tons and the unit revenue in thousands of dollars, r_{i}, for item i.

Item \boldsymbol{i}	$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{r}_{\boldsymbol{i}}$
1	2	31
2	3	47
3	1	14

Determine the number of units of each item that will maximize the total return
(11 marks)

QUESTION FOUR

(a.) Describe the shortest-route problem
(2 marks)
(b.) Describe the Dijkstra's Algorithm for determining the shortest routes between the source node and every other node in the network
(c.) The network in Figure 1-1 gives the permissible routes and their lengths in kilometres between city 1 and four other cities (nodes 2 to 5).

Fig 1-1: Network for Dijkstra's shortest-route algorithm

Determine the shortest routes between city 1 and each of the remaining four cities
(10 marks)
QUESTION FIVE
(a.) Describe the general constrained nonlinear programming problem
(b.) Describe the separable programming as a method to solve non-linear problems
(c.) Use separable programming to solve the problem

$$
\text { Maximize } \quad z=x_{1}+x_{2}^{4}
$$

subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}^{2} \leq 9 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

