

TECHNICAL UNIVERSITY OF MOMBASA

UNIVERSITY EXAMINATIONS 2015/2016

EXAMINATION FOR THE DEGREE OF BACHELOR OF COMMERCE

BMS 4405: OPERATIONS RESEARCH II

END OF SEMESTER EXAMINATIONS

SERIES: SEPTEMBER 2016

DATE: SEPTEMBER 2016 B DURATION: 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE

(a.) Explain the	
(i.) M-method	(4 marks)
(ii.) Two-phase method	(4 marks)
of solving the LP problem	
(b.) Give a summary of the steps used in the Two-phase method	(6 marks)
(c.) (i.) Use the two-phase method to solve the LP problem:	

Minimize $z = 4x_1 + x_2$

Subject to

$3x_1 + x_2 = 3$
$4x_1 + 3x_2 \ge 6$
$x_1 + 2x_2 \le 4$
$x_1, x_2 \ge 0$

Find the basic feasible solution

(ii.) Find the optimal solution

QUESTION TWO

(a.) The states of a Markov Chain can be classified based on the transition probability p_{ij} of **P**. Explain the following statements:

(i.) A state j is absorbing	(2 marks)
(ii.) A state j is transient	(2 marks)
(iii.) A state j is recurrent	(2 marks)
(iv.) A state j is periodic	(2 marks)
(b.) (i.) Define the steady-state probability in an Ergodic Markov Chain	(2 marks)
(ii.) Explain the term "mean first return time"	(2 marks)

(c.)(i.) Determine the steady-state probability distribution, given the transition matrix

	(0.3	0.6	0.1	
P =	0.1	0.6	0.3	(4 marks)
	0.05	0.4	0.55)	

(ii.) Compute the mean first return time

QUESTION THREE

(a.) Give the three basic elements of the Dynamic Programming Model	(3 marks)
(b.) Describe the Knapsack/Fly-Away kit/Cargo-Loading Model	(6 marks)

(c.) A 4-ton vessel can be loaded with one or more of three items. The following table gives the unit weight, w_i , in tons and the unit revenue in thousands of dollars, r_i , for item *i*.

(10 marks)

(6 marks)

(4 marks)

Item <i>i</i>	Wi	r_i
1	2	31
2	3	47
3	1	14

Determine the number of units of each item that will maximize the total return (11 marks)

QUESTION FOUR

(a.) Describe the shortest-route problem

(b.) Describe the Dijkstra's Algorithm for determining the shortest routes between the source node and every other node in the network (8 marks)

(c.) The network in Figure 1-1 gives the permissible routes and their lengths in kilometres between city 1 and four other cities (nodes 2 to 5).

Fig 1-1: Network for Dijkstra's shortest-route algorithm

Determine the shortest routes between city 1 and each of the remaining four cities

(10 marks)

QUESTION FIVE

- (a.) Describe the general constrained nonlinear programming problem (4 marks)
- (b.) Describe the separable programming as a method to solve non-linear problems

(4 marks)

(c.) Use separable programming to solve the problem

Maximize
$$z = x_1 + x_2^4$$

subject to

(2 marks)

 $3x_1 + 2x_2^2 \le 9$ $x_1, x_2 \ge 0$

(12 marks)