

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHS & PHYSICS

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN ELECTRICAL & ELECTRONIC ENGINEERING

AMA1151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: APRIL / MAY 2016 SERIES

TIME:2HRS

DATE: APRIL / MAY 2016

Instructions to Candidates

. .

You should have the following for this examination -Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE

a)	Prove the following identities:-				
	(i) Giv	en that Sin(A+B) -	Sin AcosB + CosA SinB prove t	that	
	Sin:	3A = 3SinA - 4Sin 3	A	(6Mks)	
	(ii) In t	riangle ABC, A=4.	73 and $< c=42^{\circ}12$ ' calculate the side	ze of angle A(6Mks)	
b)	Express i	n polar co-ordinate	s (-2, -3)	(5Mks)	
c)	Express	$\frac{1}{(x+2)(x-1)^2}$	in partial fractions	(6Mks)	
d)	Simplify	$\frac{1}{\sqrt{(x^2-a^2)}}$	when $x=a \operatorname{cosec} \theta$	(7Mks)	

a)	A triangle ABC has AB=19cm, AC=16cm and $\langle ABC = 50^{\circ}$. Find the remain (8Mks)	ning sides and angles.
b)	Find the values of θ between 0^0 and 360^0 that satisfy the equation $5 = 4\cos^2\theta + 4\sin\theta = 0$	(5Mks)
c)	(i) Prove that $tan \Theta + cos \Theta = sec \Theta cosec \Theta$	(3Mks)
	 (ii) In the right angled triangle ABC where C=12, b =5 and a=13 find sec B and cosec C 	(5Mks)
	QUESTION THREE	
a)	Differentiate from first principle $f(x) = 3x^2 + 6x - 3$	(4Mks)
b)	Find the gradient of the curve $X = \frac{t}{1+t} \qquad y = \frac{t^2}{1+t} \qquad \text{at the point (1/2, 1/2)}$	(5Mks)
c)	Differentiate the following expressions (i) $Y = (x^2 - 3) (x + 1)$ and simplify the result	(4Mks)
	(ii) $Y = 2^{x} 2^{x}$	(3Mks)
	(iii) $(3x+2)^4$	(3Mks)
	QUESTIONS FOUR	
	a) If $(2-j)(3+j^2) = r(\cos\theta + j\sin\theta)$ 3-j4 Find r	(4 mks)
	b) (i) Rationalize $\frac{2-j3}{1+j2}$	(3mks)
	(ii) If $(2 + j3) (3 - j4) = x + jy$ find x and y	(3Mks)
	c) Given $\cos 3\theta + j\sin 3\theta = (\cos \theta + j\sin \theta)^3$ by demoivers theorem; expand the find $\tan 3\theta$ (4Mks)	he expression and hence
	(ii) Find the fourth roots of $3 - j4$	(6Mks)
a)	(i) Use the second derivative test to investigate the stationing values of the function xe ^{-x}	(5Mks)
	(ii) In alternating voltage is given by $\mu = 20$ Sin 50t volts, where t is the time in seconds. Calculate the rate of -0.01s (3Mks)	change of voltage when t
©7	<i>Technical University of Mombasa</i>	Page 2 of 3

QUESTION TWO

b)	(i) Investigate the stationery values of the function	
	$f(x) = x^3 - 3x^2 + 3x$ and sketch the graphs of $y = f(x)$	(5Mks)

(ii) Express
$$\frac{7x^2 - 18x - 7}{(x - 4)(2x^2 - 6x + 3)}$$
 in partial functions. (7Mks)