

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF PURE AND APPLIED SCINCES

DEPARTMENT OF MATHS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

UPGRADING MATHS

AMA 1003 CALCULUS

END OF SEMESTER EXAMINATION

DECEMBER SERIES

TIME: 2HRS

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID

This paper consists of 5 questions. Answer Question One And Any Other Two Questions

Do not write on the question paper.

QUESTION ONE (30MKS)

- a) L_1 is a straight line that passes through (4, 2) and is normal to a line L_2 which passes through points Q(2,1) and has a gradient equal to -0.5 find the equations of the two lines [4mks]
- **b**) Determine the inverse of f(x) given that $f(x) = \frac{4-x}{2-x}$ 4mks]
- c) What is the gradient and y-intercept of the line 3x = 2y 4 [4mks]
- d) Determine the equation of a straight line through' point A(4, -2) and is parallel to line y = -0.5x [4mks]
- e) Determine the maximum value of y if $y = -0.02x^3 + 30x^2 + 20$ [7mks]

f) Evaluate i) $\int_0^1 (2x+4)dx$ [3mks]

II)
$$\int_{4}^{9} x^{0.5} dx$$
 [3mks]

QUESTION TWO

- a. Determine the equation of perpendicular line to the curve $y = 2x^2 + 2x$ at x = 1 [6mks]
- b. Given that the $q = x^3 0.5x^2 + 100$; determine the coordinates of the turning points [8mks]
- c. Find $g_0 f$ given f(x) = 2x + 1 and $g(x) = 3x^2 + 2$ hence find $g_0 f(0)$ [6mks]

QUESTION THREE

- a) Determine the value of x where the gradient of the curve $y = -12x x^3 + 8$ is equal to zero [4mks]
- b) Use Simpson rule to estimate $\int_2^6 x^2 dx$ with n= 4 and hence determine the error in the approximation [8mks],
- c) Find I) h0h(x) given that h(x) = 2x + 4 [4mks] ii. h0h(2)
- d) diferentiate $y = x^2 + 2x$ from first principals [4mks]

QUESTION FOUR

- a. A straight line passes through points $A(2, 2) \ B(4 \ 6)$ and C(k, 4) find the value of k [5mks]
- b. Find the area under the curve $y = 3x^2$ between x = 2 to x = 4 and the x-axis by
 - i. Integration method [3mks]
 - ii. Simpson rule with n=4 [8mks]
- c. Find the values of x and y where the gradient of the curve $y = \frac{1}{3}x^3 4x$ is equal to 5 [5mks]

d. Determine the turning point to the curve $y = 0.01x^2 - 0.16x + 10$. Is point a minima or maxima? [6mks]

QUESTION FIVE

a) Find the second derivatives of the following curves at x = 0

i.
$$y = 3 + 2x^2 + 10x$$
 [3mks]

ii.
$$y = sinx$$
 [2mks]

iii.
$$2y = 2x^2 + 3x + 4$$
 [5mks]

- b) Find the area under the curve $y = 6x^2$ between x = -2 and x = 2 and x-axis [5mks]
- c) evaluate $\lim_{x\to 4} \left[\frac{x^2-16}{x-4}\right]$ at x=1 [5mks]