TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF PURE AND APPLIED SCINCES

DEPARTMENT OF MATHS AND PHYSICS
UNIVERSITY EXAMINATION FOR:
UPGRADING MATHS

AMA 1003 CALCULUS

END OF SEMESTER EXAMINATION

DECEMBER SERIES

TIME: 2HRS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Answer Question One And Any Other Two Questions Do not write on the question paper.

QUESTION ONE (30MKS)

a) L_{1} is a straight line that passes through $(4,2)$ and is normal to a line L_{2} which passes through points $Q(2,1)$ and has a gradient equal to -0.5 find the equations of the two lines $\quad[4 \mathrm{mks}]$
b) Determine the inverse of $\mathrm{f}(\mathrm{x})$ given that $f(x)=\frac{4-x}{2-x}$
c) What is the gradient and y-intercept of the line $3 x=2 y-4$
d) Determine the equation of a straight line through' point $\mathrm{A}(4,-2)$ and is parallel to line $y=$

$$
-0.5 x
$$

e) Determine the maximum value of y if $y=-0.02 x^{3}+30 x^{2}+20$
f) Evaluate

$$
\begin{aligned}
& \text { i) } \int_{0}^{1}(2 x+4) d x \\
& \text { II) } \int_{4}^{9} x^{0.5} d x
\end{aligned}
$$

QUESTION TWO

a. Determine the equation of perpendicular line to the curve $y=2 x^{2}+2 x$ at $x=1$
b. Given that the $q=x^{3}-0.5 x^{2}+100$; determine the coordinates of the turning points
c. Find $g_{0} f$ given $f(x)=2 x+1$ and $g(x)=3 x^{2}+2$ hence find $g_{0} f(0)$

QUESTION THREE

a) Determine the value of x where the gradient of the curve $y=-12 x-x^{3}+8$ is equal to zero
b) Use Simpson rule to estimate $\int_{2}^{6} x^{2} d x \quad$ with $\mathrm{n}=4$ and hence determine the error in the approximation
c) Find \quad I) $h 0 h(x)$ given that $h(x)=2 x+4 \quad$ [4mks]
ii. $h 0 h(2)$
d) diferrentiate $y=x^{2}+2 \mathrm{x}$ from first principals [4mks]

QUESTION FOUR

a. A straight line passes through points $\mathrm{A}(2,2) \mathrm{B}(46)$ and $\mathrm{C}(\mathrm{k}, 4)$ find the value of k
b. Find the area under the curve $y=3 x^{2}$ between $x=2$ to $x=4$ and the x -axis by
i. Integration method
ii. Simpson rule with $\mathrm{n}=4$
c. Find the values of x and y where the gradient of the curve $y=\frac{1}{3} x^{3}-4 x$ is equal to 5
d. Determine the turning point to the curve $y=0.01 x^{2}-0.16 x+10$. Is point a minima or maxima?

QUESTION FIVE

a) Find the second derivatives of the following curves at $x=0$
i. $y=3+2 x^{2}+10 x$
[3mks]
ii. $\quad y=\sin x$
[2mks]
iii. $\quad 2 y=2 x^{2}+3 x+4$ [5mks]
b) Find the area under the curve $y=6 x^{2}$ between $x=-2$ and $x=2$ and x -axis [5mks]
c) evaluate $\lim _{x \rightarrow 4}\left[\frac{x^{2}-16}{x-4}\right]$ at $x=1$
[5mks]

