TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF PURE AND APPLIED SCINCES
DEPARTMENT OF MATHS AND PHYSICS

UNIVERSITY EXAMINATION FOR:
UPGRADING MATHS
AMA 1003 CALCULUS

END OF SEMESTER EXAMINATION
 MAY SERIES YR1 SEM1

TIME: 2HRS
MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Answer Question One And Any Other Two Questions
Do not write on the question paper.

QUESTION ONE (30MKS)
a) Determine the equation of a straight line passes through $Q(4,1)$ and is Perpendicular to line

$$
\begin{equation*}
y=x-2 \tag{4mks}
\end{equation*}
$$

b) Determine if $\mathrm{f}(\mathrm{x})$ is continuous at $x=2$ given that $f(x)=\frac{8 x}{2-x}$
c) What is the gradient and y-intercept of the following lines;
I. Evaluate $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
II. Determine the equation of a straight line thro' $\mathrm{A}(82)$ and parallel to line $y=0.5 x+3$ [
III. Determine the maximum value of y if $\mathrm{y}=-0.01 x^{2}+10 x+20$
IV. Find the equation of a normal to the curve $y=2 x^{3}-24 x+4$ at $x=1$

QUESTION TWO

a. Determine the equation of perpendicular to curve $y=2 x^{2}+2$ at $x=1 \quad$ [6mks]
b. find $g_{0} f$ given $g(x)=2 x-2$ and $f(x)=3 x^{2}+2 x+2$ hence find $g_{0} f(1)$ [6 mks]
c. Given that the $p=x^{3}-9 x^{2}+1000$; determine the minimum and maximum values of p [6 mks]

QUESTION THREE

a) Determine the value of x where the gradient of the curve $y=x^{2}-27 x+18$ is equal to 1 [4mks]
b) Use Simpson rule to evaluate $\int_{2}^{5} x^{2} d x \quad$ with $\mathrm{n}=6$

Hence show that the error is $\frac{1}{3}$
c) Find the inverse of the function $h 0 h(x)$ given that $h(x)=2 x-4$

QUESTION FOUR

a. A straight line passes through $\mathrm{A}(12) \mathrm{B}(46)$ and $\mathrm{C}(\mathrm{x}, 4)$ find the value of x [5mks]
b. Find the area under the curve $y=3 x^{2}$ between $x=2$ to $x=4$
[4mks]
c. Find the values of x and y where the gradient of the curve $y=\frac{1}{3} x^{3}-7 x$ is equal to 9 [5mks]
d. Determine the maximum value of y if $y=0.001 x^{2}-0.8 x+10$

QUESTION FIVE

a) Find the second derivatives of the following curves

$$
\begin{array}{lll}
\text { i. } & y=3 x^{3}+2 x^{2}+10 x & {[3 \mathrm{mks}]} \\
\text { ii. } & y=\left(x^{2}+1\right)^{2} & {[4 \mathrm{mks}]} \\
\text { iii. } & 2 y=2 x^{2}+3 x+4 & {[3 \mathrm{mks}]} \tag{3mks}
\end{array}
$$

b) Find the area under the curve $y=2 x+3$ between $x=-2$ and $x=2[5 \mathrm{mks}]$
c) Investigate the continuity of the curve $y=\frac{x^{2}-16}{x-4}$ at $x=4$
[5mks]

