

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHS & PHYSICS

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ELECTRICAL & ELECTRONIC ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING

AMA2151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: APRIL / MAY 2016 SERIES

TIME: 2HRS

DATE: APRIL / MAY 2016

Instructions to Candidates

a)

You should have the following for this examination

-Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE

(i) Differentiate from first principles $f(t) = kt4$		(3 Mks)
(ii) Given $x^3 + Y^3 - 3axy$	find <u>dy</u> dx	(2Mks)
(iii) Find the gradient at the point (1, 1) on the curve $Y = \frac{(x^3 + 4x + 1)}{(x^2 + 2x + 3)}$		(4 Mks)
b) (i) If $f(x) = 4x^3 - 2x^2 - 3x + f(1+b) - f(1)$	1 find	

b

(3Mks)

(ii) If box with sides of length x, y, z mm is expanding along the x and y sides at a rate of 2 and 3 mm per second but contracting along the side at a rate of 4mm per second. Find the rate of change of volume when x=y=10mm, z=20mm (4 Mks)

(iii) If S = a sinwt where a and w in are constants prove that

$$\frac{\mathrm{d}s}{\mathrm{d}t} = \pm \mathrm{w}\sqrt{a^2 - \mathrm{s}^2} \qquad \frac{\mathrm{d}^2 \mathrm{s}}{\mathrm{d}t^2} = -\mathrm{w}^2 \mathrm{s} \tag{4Mks}$$

- c) (i) Evaluate $I = f(2x^3 - 5x^2 + 6x - 9) dx$ (2Mks)
 - (ii) Determine $\int_{\emptyset}^{\frac{11}{2}} (Sinx cosx)dx$ (2Mks)
 - (iii) Sketch the graph $y=x^3+2x^2+x+1$ between x=-1 and x=2 and determine the area enclosed between the curve, the x-axii and between the x=-1 and x=2 (4Mks)
- d) Find the mean value of $y=3x^2+4x+1$ between x=-1 and x=2 (2Mks)

QUESTION TWO

a)	Find (i) $\lim_{n \to \infty} \frac{3n^2 - 7n - 10000}{2n^2 + n - 4}$ (ii) Show that $\lim_{x \to \infty} \frac{3n}{2n + 1} = \frac{3}{2}$	(3Mks) (3Mks)
	(iii) Evaluate: Lim $\frac{2+x}{x \rightarrow \infty}$ 3-7x	(3Mks)
b)	(i) Determine algebraically, from first principles the gradient of the graph of $y=5x^2+2$ at the point p where $x = -1.6$	(4Mks)
	 (ii) Investigate the statutory points on the graph of y=x² e^{-x} and sketch the curve 	(7Mks)
`	(D.C. 1.(1.()) ² S. 1.(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
a)	(1) Given that $h(x) = x^2 - x$ find the values of (i) $h(10)$	(2Mks)
	(ii) h(t+1)	(2Mks)
	(iii)h(5k)	(2Mks)

(II) If $f(x) = 7x$ and $g(x) = x+3$ and $fg : x \rightarrow y$ express as simply as possible the		
rule which maps x onto y. Find the values of p, q, r such that		
i) $fg: 5 \rightarrow p$	(2Mks)	
ii) $f g: 10 \rightarrow q$	(2Mks)	
iii) $fg:\mathbf{r} \rightarrow 35$	(2Mks)	
(i) prove the identity $\cosh^2 x - \sinh^2 x = 1$ from the definition (3Mks))	
(ii) Prove that $\sinh^{-1}x = \ln\{x + \sqrt{(1+x^2)}\}$ (3)		

QUESTION FOUR

a) (i) Find
$$\int \frac{1}{\sqrt{(x^2+2x+10)}} dx$$
 by completing the square and substitution of

$$x+1 = 3Sin \not O. \tag{4Mks}$$

(ii) Find I=
$$\int \sqrt{a^2 - x^2} dx$$
 by putting x = a sin \emptyset (4Mks)

- b) (i) Integrate $\frac{1}{(x+1)^2 (x+4)}$ (6 mks)
 - (ii)Find $I = \int x \sin x dx$ (3Mks)(iii)If tanhx = 1/3 what is scchx?(3Mks)

QUESTION FIVE

a) Evaluate
(i)
$$I = \int_{1}^{2} \int_{0}^{II} \int_{0}^{II} 3 + \sin \phi d\phi dr$$
 (3Mks)
(ii) $I = \int_{1}^{2} \int_{0}^{3} \int_{0}^{1} (p^{2}+q^{2}-r^{2}) dp dq dr$ (4Mks)

b)

(i) $V=(Ar^n + B/r^n) \cos (n\emptyset - \alpha)$ Satisfies the equation

$$\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{d}\mathrm{r}^2} + \frac{1}{\mathrm{r}} \frac{\mathrm{d}\mathrm{v}}{\mathrm{d}\mathrm{r}} + \frac{1}{\mathrm{r}^3} \frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{d}\mathrm{e}^2} = 0 \tag{6Mks}$$

(ii) If z = Sin(x+y) where $x = \mu^2 + V^2$ and $y = 2\mu v$ find $\frac{dz}{d\mu} \frac{dd}{dv}$ (7Mks)