### TECHNICAL UNIVERSITY OF MOMBASA

## FACULTY OF ENGINEERING AND TECHNOLOGY

## DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

# EEP 2103 CIRCUIT THEORY II

## DEEE2

SERIES: MAY 2016

## Instructions

- This paper consists of FIVE questions
- Answer any THREE questions
- All Questions carry equal marks

#### **QUESTION ONE**

| (a) | Explain the following term | s: |
|-----|----------------------------|----|
|     |                            |    |

- Average value
- ii. Instantaneous value
- iii. RMS value

iv. Form factor (7 marks)

- (b) A coil of conductor is rotating within a magnetic field. Draw the sine wave and derive the equation of the generated emf. (6 marks)
- (c) (i) Explain the term 'power factor'
  - (ii) Draw the phasor diagrams for each of the following circuits:
    - I. Ac circuit having resistance only
    - II. Ac circuit having inductance only
    - III. Ac circuit having capacitance only

(7 marks)

### **QUESTION TWO**

- (a) A coil having resistance of  $8\Omega$  and inductance of 0.18H is connected in series with a capacitor of capacitance  $80\mu$ F across a 200V, 50Hz supply. Draw the circuit diagram and calculate:
  - i. The current in the circuit
  - ii. Voltages V<sub>R</sub>, V<sub>L</sub>, and V<sub>C</sub>
  - iii. The phase angle and draw the phasor diagram

(12 marks)

- (b) With the aid of diagrams explain the functions of the following in analogue instruments
  - i. Control device
  - ii. Eddy current damping device

(8 marks)

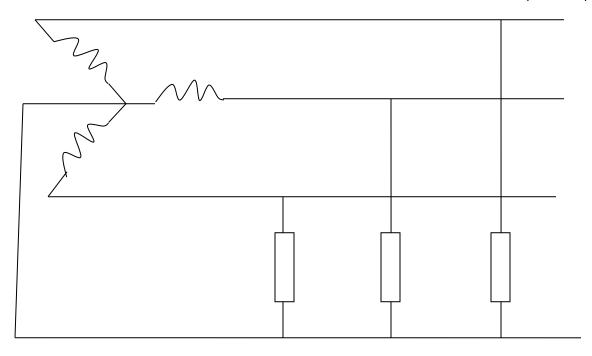
### **QUESTION THREE**

- (a) A resistance of  $25\Omega$ , an inductance of 0.18H and a capacitance of  $40\mu F$  are connected in parallel across a 200V, 50Hz supply. Calculate:
  - i. The current on each branch
  - ii. The supply current
  - iii. The phase angle and draw the phasor diagram

(10 marks)

- (b)(i) Distinguish between admittance and susceptance
  - (ii) Explain the condition for resonance

(4 marks)


- (c) A resistance of  $20\Omega$ , an inductance of 0.12H and capacitance of  $50\mu F$  are connected in series. Calculate the impedance using:
  - i. Rectangular notation
  - ii. Polar notation

(6 marks)

#### QUESTION FOUR

- (a) For the circuit of figure Q4a, calculate
  - i. Current in each line
  - ii. The current in the neutral conductor

(12 marks)



- (b) Draw the waveforms for three phase emfs and state expressions for line and phase currents in:
  - i. Star- connected supply
  - ii. Delta connected supply

(8 marks)

### **QUESTION FIVE**

- (a) With the aid of a diagram explain how deflection is achieved in a permanent magnet moving coil instrument. (7 marks)
- (b) (i) State the expression for power in a three phase system
  - (ii) A three phase delta connected motor operating off a 415V system is developing 25kW at an efficiency of 0.9p.u. and a power factor of 0.88. Calculate:
    - I. The line current
    - II. The phase current

(6 marks)

(c) With the aid of a diagram explain the two-meter method of power measurement in three phase systems. (7 marks)