

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

THE DEGREE IN BACHELOR OF SCINCE IN MECHANICAL ENGINEERING

EMG 2308 : ENGINEERING THERMODYNAMICS III

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

 $\textbf{TIME:} \ 2 \ \text{HOURS}$

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question ONE

a)	Explain the	following terms	as applied to internal	combustion engines
aj		tonowing terms	as applied to internal	compustion engines.

	i.	Bore	
	ii.	Stroke	
	iii.	Clearance volume.	
	iv.	Swept volume	(4 marks)
b)	Explain	with suitable sketches the working of a four-stroke otto engine.	(4 marks)
c)	Explain	the fundamental differences between combustion Ignition and spark ign (8 marks)	nition engines.
d)	State fo	our purposes of lubrication of an engine	(4 marks)

Question TWO

a) Descrbe a hypothetical indicator diagram and derive the equation to determine the mean effect			
	with clearance.		(6 marks)
b)	Explain adiabatic flame temperature	2	(3 marks)
c)	Explain the stoichiomeric air-fuel fue	l ratio(A/F)	(3 marks)
d)	A steam boiler uses pulverised coal in C =78%, H ₂ =3% ,O ₂ =3%,S=1%,ash 10% supplied and mass of gaseous produc	n the furnace. The ultimate analysis of c % and 5% moisture. Excess air supplied i ct formed per kg of coal burnt. (8 marks	oal by mass is s 30%.Calculate the mass of air to be)
Quest	ion THREE		
a)	Describe otto cycle using appropriate	e diagrams and derive it's efficiency.	(10 marks)
b)	In an air standard Otto cycle, the com added is 2510 Kj/kg. Calculate i. Maximum temperature and ii. Work done per kg of air iii. Cycle efficiency iv. Mean effective pressure Take for air C _v =0.713kJ/kg K and R=2	npression ratio is 7 and the compression pressure of the cycle. 87j/kg K	begins at 1 bar and 313k.The heat (10 marks)
Quest	ion FOUR		
a)	 Define the following engine perform. i. Specific output ii. Specific fuel consumption iii. Volumetric efficiency iv. Specific weight 	ance parameters of internal combustior	n engines. (4 marks)
b)	With appropriate sketches describe t i. Turbulent chamber ii. Pre combustion chamber iii. Energy cell	the following designs of combustion cha	imbers (6 marks)
c)	The following particulars were obtain	ned in a trial on a 4-stroke gas engine	
	Duration of trial	= 1 hour	
	Revolutions	=14000	
	Number of missed cycles	= 500	
©Tech	nical University of Mombasa		Page 2 of 3

Net brake load	=1470 N
Mean effective pressure	=7.5 bar
Gas consumption	=20000 litres
Calorific value of gas	=21kJ/litre
Cylinder diameter	= 250 mm
Stroke	=400 mm
Effective brake circumference	=4 m
Compression ratio	=6.5 : 1

Calculate

i.	Indicated power	
ii.	Brake power	
iii.	Mechanical efficiency	
iv.	Indicated thermal efficiency	(10 marks)

Question FIVE

a)	Explain the difference between theoretical and actual value timing diagrams of a petrol engine				
					(4 marks)
b)	Explain the following methods of coo	ling I.C er	ngines		
	i. Air cooling				
	ii. Liquid cooling				(6 marks)
c)	Describe a rope brake dynamometer	and deriv	e the b	rake power equation.	(7 marks)
d)) The following data were recorded in MPUC laboratory experiment with the rope brake.				rope brake.
	Diameter of the fly wheel	=1.2	m		
	Diameter of the rope= 12.5 mmEngine speed=200 r.p.m				
	Dead load on the brake	=600 1	N		
	Spring balance reading	=150 1	N		
	Calculate the brake power of the engine.			(3 marks)	