TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING
 UNIVERSITY EXAMINATION FOR:

THE DEGREE IN BACHELOR OF SCINCE IN MECHANICAL ENGINEERING EMG 2307 :FLUID MECHANICS III END OF SEMESTER EXAMINATION

SERIES: APRIL 2016
time: 2 hours
DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question ONE

a) Define the following functions
i. Velocity potential function
ii. Stream function.
b) A fluid flow field is given by $V=x^{2} y i+y^{2} z j+\left(2 x y z+y z^{2}\right) k$

Calculate the velocity and acceleration at the point $(2,1,3)$
c) A stream function is given by $\quad \psi=5 x-6 y$

Calculate the velocity components and also magnitude and direction of the resultant at any point.

Question TWO

a) Explain compressible flow and incompressible flow (4 marks)
b) Derive the expression for Bernoulli's equation when the process is isothermal (6 marks)
c) A 120 mm diameter pipe reduces to 60 mm diameter through a sudden contraction. When it carries air at $25^{\circ} \mathrm{C}$ under isothermal condition, the absolute pressure observed in the two pipes just before and after the contraction are $480 \mathrm{kN} / \mathrm{m}^{2}$ and $384 \mathrm{KN} / \mathrm{m}^{2}$ respectively, calculate:
i. Densities at the sections.
ii. Velocities at the two sections
iii. Mass rate of flow through the pipe

Question THREE

a) Explain the following flows:
i. Forced vortex flow
ii. Free vortex flow
b) An open cylinder of 15 cm diameter and 100 cm long contains water up to a height of 80 cm . Find the maximum speed at which the cylinder is to be rotated about its vertical axis so that no water spills.
(7marks)
c) A cylindrical vessel 12 cm in diameter and 30 cm deep is filled with water upto the top. The vessel is open at the top. Find the quantity of liquid left in the vessel, when it is rotated about its vertical axis with a speed of 300 rpm .

Question FOUR

a) Describe the following efficiencies of a turbine
i. Hydraulic Efficiency
ii. Mechanical Efficiency
iii. Volumetric Efficiency
iv. Overall Efficiency
b) Draw a schematic diagram of a Francis turbine and explain briefly its construction and working.
c) State advantage of a Francis turbine over Pelton wheel

Question FIVE

a) What is a pump?
b) State any six advantages of a centrifugal pump over a displacement (reciprocating) pump. (6 marks)
c) List the main components parts of a centrifugal pump and explain them briefly
(11 marks)

